

ANEXO 4 – INFORME DE OPERACIONES Y MEMORIA TECNICA

PROYECTO: Servicio de Operación de Escombrera "El Troje 4"

CONTRATANTE: Empresa Metropolitana de Gestión Integral de Residuos Sólidos

CONTRATSITA: Constructora Bonilla García Cía. Ltda.

PLANILLA: 1

PERÍODO: Del 1 al 25 de abril del 2015

INFORME DE OPERACIONES Y MEMORIA TÉCNICA:

Con fecha 30 de marzo del 2015 fue suscrito el contrato para la prestación del Servicio de Operación de la Escombrera El Troje 4 entre la Empresa Metropolitana de Gestión Integral de Residuos Sólidos EMGIRS EP y Constructora Bonilla García Cía. Ltda., procediendo iniciar las operaciones el día miércoles 1 de abril del 2015, realizándose las siguientes actividades hasta el 25 de abril del 2015:

1. PLAN DE OBRA Y OPERACIÓN

- Adecuación de la zona de trabajo
- Disposición de escombros
- Actividades de control de los niveles
- Mantenimiento de la maquinaria, equipo e instalaciones
- Seguimiento y control de efectos ambientales
- Procedimientos de Seguridad y Emergencias

2. OBRAS DE ADECUACIÓN Y PREPARACIÓN DEL SITIO

- Infraestructura complementaria y medidas de protección
- Rotulación de identificación
- Instalaciones sanitarias
- Instalaciones para los trabajadores
- Instalaciones para administración
- Replanteo y nivelación de área para instalación de control de vallas automáticas
- Iluminación
- Áreas para mantenimiento de maquinaria, áreas de parqueo y maniobras.
- · Adecuación de zona a conformar
- Manejo de las aguas de Escorrentía
- Localización
- Plan de Tráfico
- Mantenimiento de vías de acceso principales e internas

3. ESTUDIO GEOTECNICO

Toma de muestras (calicatas) para estudio de suelo previo al diseño técnico de la escombrera

4. RECEPCIÓN DE ESCOMBROS

- Las áreas destinadas por rellenar con escombros se realizó por módulos, los cuales están circunscritos por las vías de acceso a los lugares de descarga final.
- Para la conformación del relleno, con el fin de lograr una compactación adecuada, se dispuso el material en capas con espesores no superiores a 0.60 metros y compactación con rodillo.
- Control de polvo (constante aspersión de agua con tanquero) en los días en los que hubo ausencia de lluvias
- Conformación de píe de talud de la escombrera

5. MANEJO DE LAS AGUAS DE ESCORRENTÍA

- Manejo adecuado de las aguas lluvias dentro de las zonas de trabajo, mediante la construcción de bermas con pendientes hacia el interior de los taludes, cunetas de drenaje a lo largo de las mismas, canales, estructuras de caída o de vertimiento.
- 6. CHARLAS DE CAPACITACIÓN A PERSONAL EN CARACTERÍSTICAS DE LA OPERACIÓN, NORMAS DE SEGURIDAD Y SALUD OCUPACIONAL Y CUMPLIMENTO AMBIENTAL.
- 7. ELABORACIÓN DE MEMORIA TÉCNICA DE LA ESCOMBRERA Y SU ESTRUCTURA DURANTE EL PERÍODO COMPRENDIDO ENTRE EL 1 Y EL 25 DE ABRIL DEL 2015.
- Registro de características del material que ingresa a la Escombrera
- Registro de secuencia de relleno y compactación.
- Registro de tipo y número de maquinaria y equipos utilizados dentro del predio:
 - 1 Tractores de oruga Komatsu D155

- 1 Tractores de oruga Komatsu D65
- 1 Tanquero de 4000 galones de capacidad
- 1 Rodillo Pata de Cabra
- 1 Moto Niveladora
- 1 Excavadora de Oruga
- 1 Volqueta mula
- 1 Cargadora frontal

Análisis de estabilidad de taludes:

Los parámetros asumidos para el análisis de estabilidad han sido los siguientes:

- Altura individual de cada talud
- Altura total de los taludes y bermas
- Ancho de bermas
- Pendiente de los taludes
- Intensidad de precipitaciones del orden de 160 mm
- . Aceleraciones sismicas del orden de 0.18 g
- Densidad del agua = 1 ton/m3
- Cohesión del suelo = 1,24kg/cm2
- Angulo de fricción interna = 35°

Fórmula para el análisis de susceptibilidad del talud: cálculo del factor de seguridad:

 $F_{\tau} = \tau f / \tau$

Al definir el talud como talud infinito se puede considerar que todos los planos verticales son equivalentes a sí mismos, en donde las fuerzas E y E' ejercidas a ambos lados de dos secciones verticales próximas serán iguales y de sentido contrario (figura). Ello nos permite resolver de forma simple el estado de tensiones en la base del elemento a-b-c-d proyectando el peso W sobre la superficie de rotura (figura).

 $\tau = W seni = b.d.y. seni = yd seni cosi$

 $\sigma = W \cos i = b.d. \gamma. \cos i = \gamma d \cos^2 i$

Obteniendo la fórmula del Factor de Seguridad en talud infinito como:

$$F_{\tau} = \frac{\tau_{f} + (\sigma - p_{w}) \operatorname{tg} \phi}{\tau} = \frac{c' + (\gamma d \cos^{2} i - p_{w}) \operatorname{tg} \phi}{\tau}$$

Donde:

c' = cohesión

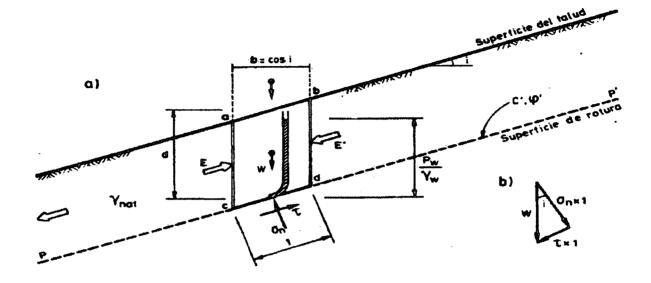
 ϕ = ángulo de rozamiento interno

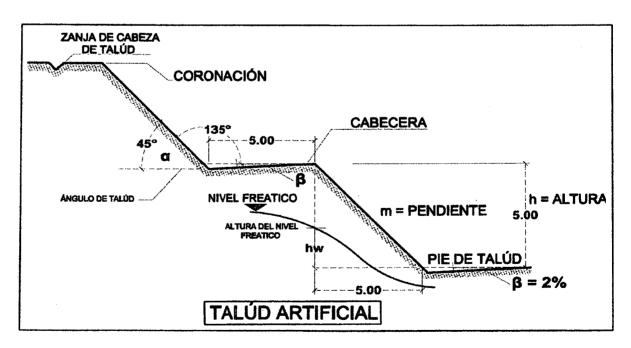
Y = peso específico del terreno

d = profundidad de la superficie de rotura

i = pendiente de la superficie de rotura

p_w = presión del agua


Y a su vez, la presión del agua en los poros se puede expresar como:


 $P_w = \gamma_w * h_w$

Donde:

Yw = peso específico del agua

 $h_w = altura$ piezométrica sobre la superficie rotura

Número de plataformas: 10 - Inicia en la cota 3038 y termina en la cota 3096

Ancho de la berma: 5m Altura del talud: 4,50m - 6m

Pie de talud: 5m

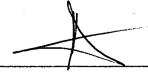
Inclinación del talud: 45%

Hipotenusa: 7,071m

- Personal que laboró durante el período:

CEDULA	NOMBRE	CARGO	MODALIDAD DE CONTRATO
1704463304	Bonilla Salazar Pedro Luis	Director de proyecto	NOMINA
1714588710	Castro España Reinaldo Enrique	Supervisor de operaciones - topografía	NOMINA
1702353358	Anchapaxi Canecia Pedro	Operador de Maquinaria - Rodillo	NOMINA
1003595665	Guerra Quillupangui Ronnie Marcelo	Ayudante guía de descarga	NOMINA
1101469474	Herrera Pinta Luis alfredo	Operador de Maquinaria - Buldozer	NOMINA
1717356875	Quiguango Quiguango William Arturo	Ayudante de maquinaria	NOMINA
1724036130	Quishpe Chisaguano Luis Cristo	Ayudante gula de descarga	NOMINA.
1705290318	Tituaña Pinto luis Oswaldo	Operador de Maquinaria - Excavadora	NOMINA
1752455145	Torres Vivanco Bryan Fernando	Ayudante de maquinaria	NOMINA
1703263184	Loachamin Nasimba Victor Manuel	Operador de Maquinaria - Moto niveladora	NOMINA
1723956213	Navarreye Caizatoa Klever Roberto	Ayudante guía de descarga	NOMINA
1102569140	Torres Armijos Edgar Adriano	Operador de Maquinaria - Buldozer	NOMINA
1001980869	Puma Mediavilla Hector Javier	Ayudante guía de descarga	NOMINA
1003984158	Valverde Quiguango Gonzalo Federico	Ayudante guía de descarga	NOMINA

8. El volumen ingresado a la escombrera, de conformidad a la información entregada por EMGIRS EP, durante el periodo al que corresponde éste informe es de 80.349,00 m3.


Arq. Pedro Bonilla S.

Representante Técnico

BONILLA GARCÍA da Luda

FIRMA AUTORIZADA

CONSTRUCTORA BONILLA GARCÍA CÍA. LTDA.

