"ESTUDIO DE ARQUITECTURA E INGENIERÍAS DEL INMUEBLE DENOMINADO CASA GARCIA MORENO –IMP"

MEMORIA TÉCNICA ESTRUCTURAL- MÓDULO DE DISTRIBUCIÓN EXTERIOR

Código Proceso No.: CD-MDMQ-IMP-16-2022

Objeto del proceso: "ESTUDIO DE ARQUITECTURA E INGENIERÍAS DEL INMUEBLE

DENOMINADO CASA GARCIA MORENO -IMP"

Contratista: Bernardo Roberto Bustamante Patiño Ingeniero Encargado: Galo Fernando Serrano Chica

Administrador: Arq. Ana Lucía Andino

OCTUBRE, 2022

DISEÑO ESTRUCTURAL "CASA GARCÍA MORENO-MÓDULO DE DISTRIBUCIÓN EXTERIOR"

ÌNDICE DE FIGURAS	3
1. INTRODUCCIÓN	4
2. DESCRIPCION GENERAL DEL PROYECTO	4
3. CARGAS DE DISEÑO	6
4. CÁLCULO DE CORTE BASAL	6
4.1. NEC_SE	6
4.2. CATEGORIA DE EDIFICIO Y COEFICIENTE DE IMPORTANCIA	9
5. COMBINACIONES DE CARGA	11
5.1. NEC_SE	11
6. ANÁLISIS ESTRUCTURAL.	12
6.1. ESPECIFICACIONES TÉCNICAS	12
6.2. CONTROL DE DERIVAS	13
6.3. MODOS VIBRATORIOS	13
6.4. MODELO ESTRUCTURAL – CUBIERTA REPOSITORIO	14
6.4.1. INGRESO DE CARGAS	16
6.4.2. CONTROL DE DERIVAS.	
6.4.3. MODOS VIBRATORIOS.	25
6.4.4. DISEÑO ESTRUCTURAL DE LOS ELEMENTOS	29
6.4.4.1. VIGAS	29
6.4.4.2. COLUMNAS	
7. CIMENTACIÓN	37
Q DEEEDENCIA C	55

ÌNDICE DE FIGURAS

Figura 1. Plantas estructura en estudio	5
Figura 2. Modelo 3D	
Figura 3. Secciones de la estructura	15
Figura 4. Ingreso del cortante basal	16
Figura 5. Peso en función del cortante basal	16
Figura 6. Carga muerta por piso	
Figura 7. Asignación del espectro	18
Figura 8. Secciones ocupadas en el diseño	18
Figura 9. Sección columna 130x130x6	19
Figura 10. Diagonal 200X200X8	19
Figura 11. Tubo 130x130x5	
Figura 12. Viga 100x8x250x4	20
Figura 13. Viga 100x8x300x5;Error! Marcador	no definido.
Figura 14. Viga 100x6x250x4;Error! Marcador	
Figura 15. Asignación de materiales	22
Figura 16. Cargas de entrepiso para correas	22
Figura 17. Cargas para ascensor	
Figura 18. Escalamiento del espectro	23
Figura 19. Deriva de piso en dirección X ΔE=0.001197	24
Figura 20. Deriva de piso en dirección Y ΔE=0.00096	
Figura 21. Envolvente de momentos de la estructura Módulo 1	
Figura 22.Secciones de viga	
Figura 23. Envolvente de momento y corte de la viga	30
Figura 24. Momento de diseño de la viga	
Figura 25. Radio de capacidad de las secciones	
Figura 26. Capacidad de las secciones	
Figura 27. Momento de diseño de columna	36
Figura 28. Definición de materiales	
Figura 29. Definición espesor de elementos de cimentación	
Figura 30. Definición parámetros de suelo	
Figura 31.Cargas exportadas desde ETABS	39
Figura 32. Esfuerzos producidos por combinación D+L	
Figura 33. Esfuerzos producidos por combinación D+L+S	40

DISEÑO ESTRUCTURAL "CASA GARCÍA MORENO-MÓDULO DE DISTRIBUCIÓN EXTERIOR"

1. INTRODUCCIÓN.

Se requiere el estudio estructural del proyecto "CASA GARCÍA MORENO-MÓDULO DE DISTRIBUCIÓN EXTERIOR", el mismo que se lo realiza con el fin de garantizar la serviciabilidad y funcionalidad de la estructura ante las solicitaciones que le competan.

El esqueleto de la estructura se construirá con elementos de acero laminados en caliente mediante el sistema de pórticos espaciales sismorresistentes, la cimentación se realizará mediante plintos aislados y losa de cimentación.

El diseño estructural del proyecto "CASA GARCÍA MORENO-MÓDULO DE DISTRIBUCIÓN EXTERIOR" se ha realizado en estricto cumplimiento de la norma "American Institute of Steel Construction" (AISC) y se ha adoptado los requisitos de la Norma Ecuatoriana de la Construcción NEC_SE. Se utiliza una capacidad portante del suelo de qadm= 16.50 T/m2 y un coeficiente de Balasto 1.98 kg/cm3.

2. DESCRIPCION GENERAL DEL PROYECTO.

El proyecto "CASA GARCÍA MORENO-MÓDULO DE DISTRIBUCIÓN EXTERIOR" contempla la elaboración de un módulo de soporte para el elevador y puentes de acceso hacia la estructura principal



Figura 1. Plantas estructura en estudio

3. CARGAS DE DISEÑO.

Las cargas verticales de diseño para las estructuras nuevas se definieron en base al capítulo 1 de la Norma Ecuatoriana de la Construcción, NEC_SE

Cargas para estructuras con entrepiso:

Carga muerta en entrepiso	200 kg/m ²
Carga viva en entrepiso	250 kg/m ²
Carga viva en salas de lectura	290 kg/m ²
Carga viva en estanterías	720 kg/m ²
Carga Viva en Corredores	480 kg m ²
Carga total en entrepiso Corredores	730 kg/m²
Carga total en entrepiso Normal	450 kg/m²
Carga total en Salas de lectura	540 kg/m ²
Carga total en estanterías de Biblioteca	970 kg/m ²

^{*}La carga muerta impuesta; no considera pesos de columnas, vigas u otros elementos estructurales, estos pesos se consideran de forma automática en el modelo estructural realizado en ETABS 2019.

4. CÁLCULO DE CORTE BASAL.

En este procedimiento se ha considerado las especificaciones descritas por la Norma Ecuatoriana de la Construcción NEC_SE.

4.1. **NEC_SE**

En el cálculo de la fuerza total sísmica en la base la estructura V, a nivel de **cargas últimas**, se ha tomado en consideración las siguientes expresiones dadas por el Norma Ecuatoriana de la Construcción:

Donde:

$$V = \frac{I S_a}{R \varphi_P \varphi_E} W$$

$$T = C_t h_n^a$$

$$Tc = 0.55Fs \frac{Fd}{Fa}; T_l = 2.4Fd$$

$$S_a = n Z F_a \ para \ 0 \le T \le Tc$$

$$S_a = n Z F_a \left(\frac{T_c}{T}\right)^r para T > Tc$$

I = Factor de Importancia.

Sa = Aceleración Espectral.

R = Factor de reducción de resistencia estructural.

Φp = Coeficiente de configuración estructural en planta.

ΦE = Coeficiente de configuración estructural en Elevación.

T1 = Período de vibración, método 1.

Z = Factor de Zona.

Ct y α = Factores según el tipo de edificación.

hn = Altura máxima de la edificación, medida desde la base.

Fa, Fd y Fs = Coeficientes de Amplificación o de Amplificación Dinámica de Perfiles de Suelo.

r = Factor de Tipo de Suelo

η = Factor de Región

W = (Carga Muerta Total de la estructura más 25% de la carga viva de piso).

hn = Altura máxima de la edificación, medida desde la base.

Valores del factor Z en función de la zona sísmica adoptada:

Zona sísmica	I	II	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Clasificación de los perfiles de suelo:

Tipo de perfil	Descripción	Definición				
Α	Perfil de roca competente	V _s ≥ 1500 m/s				
В	Perfil de roca de rigidez media	1500 m/s > V _s ≥ 760 m/s				
С	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s >V₁≥ 360 m/s				
	Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios	$\overline{N} \ge 50.0$ $S_u \ge 100 \text{ KPa (≈ 1 kgf/cm²)}$				
D	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s >V _s ≥ 180 m/s				
	perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones	$50 > \overline{N} \ge 15.0$ $100 \text{ kPa } (\approx 1 \text{ kgf/cm}^2) > \overline{S}_u \ge 50 \text{ kPa } (\approx 0.5 \text{ kgf7cm}^2)$				
E	Perfil que cumpla el criterio de velocidad de la onda de cortante, o					
-	perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	IP > 20 w≥ 40% \overline{S}_w < 50 kPa (≈0.50 kfg7cm²)				
	Los perfiles de suelo tipo F requieren una ev ingeniero geotecnista (Ver 2.5.4.9). Se contem	raluación realizada explícitamente en el sitio por un plan las siguientes subclases:				
	F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc.					
F	F2—Turba y arcillas orgánicas y muy orgán orgánicas).	icas (H >3m para turba o arcillas orgánicas y muy				
	F3—Arcillas de muy alta plasticidad (H >7.5	m con índice de Plasticidad IP >75)				
	F4—Perfiles de gran espesor de arcillas de ri	igidez mediana a blanda (H >30m)				
		a α occurriendo dentro de los primeros 30 m ndo contactos entre suelos blandos y roca, con de corte.				
	F6—Rellenos colocados sin control ingenieri	1.				

COEFICIENTES DE APLIFICACIÓN O DEAMPLIFICACIÓN DINÁMICA DE PERFILES DE SUELO Fa, Fd y Fs

Tipo de suelo y Factores de sitio Fa:

	Zona sísmica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.9	0.9	0.9	0.9	0.9	0.9
В		1	1	1	1	1	1
С		1.4	1.3	1.25	1.23	1.2	1.18
D		1.6	1.4	1.3	1.25	1.2	1.12
E		1.8	1.5	1.39	1.26	1.14	0.97
F		ver nota					

Tipo de suelo y Factores de sitio Fd:

	Zona sismica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.9	0.9	0.9	0.9	0.9	0.9
В		1	1	1	1	1	1
С		1.6	1.5	1.4	1.35	1.3	1.25
D		1.9	1.7	1.6	1.5	1.4	1.3
E		2.1	1.75	1.7	1.65	1.6	1.5
F		ver nota					

Tipo de suelo y Factores de sitio Fs:

	Zona sismica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.75	0.75	0.75	0.75	0.75	0.75
В		0.75	0.75	0.75	0.75	0.75	0.75
С		1	1.1	1.2	1.25	1.3	1.45
D		1.2	1.25	1.3	1.4	1.5	1.65
E		1.5	1.6	1.7	1.8	1.9	2
F		ver nota					

4.2. CATEGORIA DE EDIFICIO Y COEFICIENTE DE IMPORTANCIA.

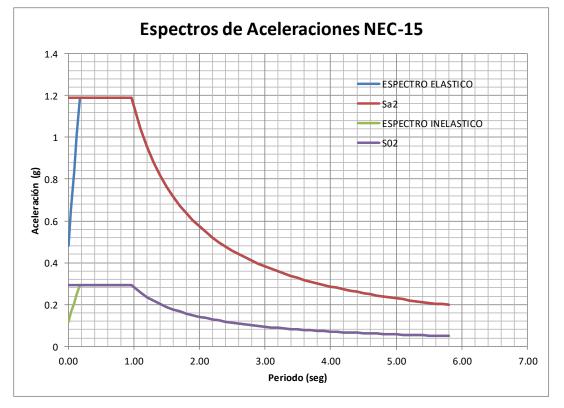

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla 6: Tipo de uso, destino e importancia de la estructura

Cálculo del Corte Basal para la estructura. (Procedimiento Estático.)

			ESPECTRO NEC-SE-DS				
PROYECTO:	GARCÍA MORENO						
RESPONSABLE:	ING. IVAN DELGADO	PRADO	FECHA:	9/11/2022	HOJA:	1 de 2	
Ubicación:		QUIT0					
Región:	Pro	vincias de la :	Sierra, Esmeraldas y Galáp	agos	$\eta = 2.48$		
Zona Sísm	ca: V		Aceleración en roca Z :	0.4	Z= 0.40		
Perfil de Si	ielo: D				r= 1.00		
Factor de S	itio Fa : 1.20						
Factor de S	Sitio Fd: 1.40						
Factor de S	Sitio Fs: 1.50						
Factor de i	mportancia:	1.00					
Irregularida	ıd en planta Φp:	0.90					
Irregularida	ıd en elevación Φ	e: 0.90					
Coeficiente	de reducción R:	5.00	ASCE 113 Considerando tipologia de la estructura y grado de redundancia estructural				
T0 = 0.175	seg	0.17500	Test=		o de la estructura		
Tc = 0.963	seg	0.96250	Sa=	1.1904			
TL= 3.36	seg	3.36000	V=	0.2939	DERIVA	0.0053	

Nota: Porcentaje del cortante basal

5. COMBINACIONES DE CARGA.

5.1. NEC_SE.

Las siguientes combinaciones de carga son las recomendadas por el Norma Ecuatoriana de la Construcción, NEC_SE:

Losa de Entrepiso

COMB. 1: 1.4*D

COMB.2: 1.2*D + 1.6*L

COMB.3: 1.2*D + 1.0*Sx + L

COMB. 4: 1.2*D - 1.0*Sx + L

COMB. 5: 1.2*D + 1.0*Sy + L

COMB. 6: 1.2*D - 1.0*Sy + L

COMB. 7: 0.9*D + 1.0*Sx

COMB. 8: 0.9*D - 1.0*Sx

COMB. 9: 0.9*D + 1.0*Sy

COMB. 10: 0.9*D - 1.0*Sy

COMB. 11: 1.2*D + 1.6*L+0.5*S

COMB. 12: 1.2*D + 1.6*L+0.5*W

COMB. 13: 1.2*D + 1.0*Ex +0.2*S

COMB. 14: 1.2*D + 1.0*Ey +0.2*S

COMB. 15: 0.9*D + 1.0*W

D: Carga Muerta.

L: Carga Viva.

S: Carga de Granizo.

W: Carga de Viento.

Sx: Sismo en la dirección "x".

Sy: Sismo en la dirección "y".

6. ANÁLISIS ESTRUCTURAL.

El diseño estructural del proyecto "CASA GARCÍA MORENO-MÓDULO DE DISTRIBUCIÓN EXTERIOR" comprende el cálculo de todas las solicitaciones en la estructura bajo cargas gravitacionales y laterales como son: momentos, cortantes, fuerzas axiales, fuerzas sísmicas y otras; además se realiza un control de derivas las mismas que deben estar dentro del rango máximo permitido por las normas vigentes, y a su vez, se revisa los modos vibratorios tomando en cuenta la participación de masas, esto con el objetivo de tener una estructura que no presente problemas de torsión en planta sino más bien que su movimiento ante cargas sísmicas sea traslacional.

Para el cálculo de las fuerzas internas se utilizó el programa de modelación estructural ETABS 2019, con el cual se obtuvieron todas las solicitaciones presentes en la estructura, además de obtener las derivas máximas y modos de vibración de la misma; cabe recalcar que el programa de modelación estructural ETABS 2019 es una **herramienta** para el diseñador y se debe tener sólidos conocimientos de los procesos y ayudas que brinda este programa, esto con el objetivo de tener una buena interpretación de los resultados obtenidos mediante su uso; por lo cual el **diseño final de los elementos de la estructura** se realizó en base a los resultados obtenidos en el programa ETABS 2019 y en hojas de cálculo de Microsoft Excel realizadas por el autor del presente estudio.

6.1. ESPECIFICACIONES TÉCNICAS.

- Resistencia cilíndrica del hormigón en losas, columnas y vigas, f'c = 210 kg/cm².
- Esfuerzo de fluencia del acero de refuerzo, fy = 4200 kg/cm².
- Acero Estructural en placas y columnas Gr50, fy = 3520 kg/cm².
- Acero Estructural en vigas , fy = 3520 kg/cm².
- Resistencia a la rotura/unidad de bloque de mampostería de paredes, σ=22.54 kg/cm².
- Peso específico del hormigón, y = 2.4 T/ m3.
- Módulo de Elasticidad del hormigón, $E = 13500 \cdot \sqrt{f'c} \, kg/cm^2$
- Módulo de Corte del Hormigón: $G = \frac{E}{2 \cdot (1+v)} kg/cm^2$
- Módulo de Poisson: v = 0.2.

6.2. CONTROL DE DERIVAS.

Los controles de las derivas de piso son fundamentales en el diseño de una estructura, a tal punto que en la mayoría de los casos las columnas y vigas son diseñadas en base a este criterio; se hace este control con el fin de evitar daños no estructurales excesivos en la edificación.

Teniendo en cuenta que las derivas de piso son desplazamientos horizontales relativos de un piso respecto a su piso consecutivo, los mismos que se obtienen bajo cargas horizontales en cada dirección de la estructura, la Norma Ecuatoriana de la Construcción NEC_SE establece un valor de deriva máxima permitida para estructuras de hormigón armado, estructuras metálicas y de madera:

$$\Delta_M = 0.75. R. \Delta_E = 0.02$$

Donde:

ΔM: Deriva máxima inelástica.

ΔE: Deriva Estática.

R: Coeficiente de reducción de respuesta estructural.

 ΔM = 0.02 R=3 $\Delta E_{PERMITIDA}$ = 0.0089 Para estructuras de Cubierta

 ΔM = 0.02 R=5 $\Delta E_{PERMITIDA}$ = 0.0053 Para estructuras con un sistema de pórtico intermedio

Las derivas de piso se calcularon en base al sismo de diseño con una excentricidad positiva y negativa del 5% en cada dirección de la estructura.

6.3. MODOS VIBRATORIOS.

Los modos vibratorios, son propiedades dinámicas del sistema y cada uno de ellos corresponde a un período, una frecuencia y un grado de libertad, además que un modo representa la forma natural de vibración del sistema; el primer modo de vibración corresponde al primer período o también llamado período fundamental del sistema, debido a que este es el más importante y el más influyente, que junto con el segundo modo de vibración generalmente son los predominantes en el análisis dinámico de la estructura.

6.4. MODELO ESTRUCTURAL – MÓDULO DE ELEVADOR EXTERIOR

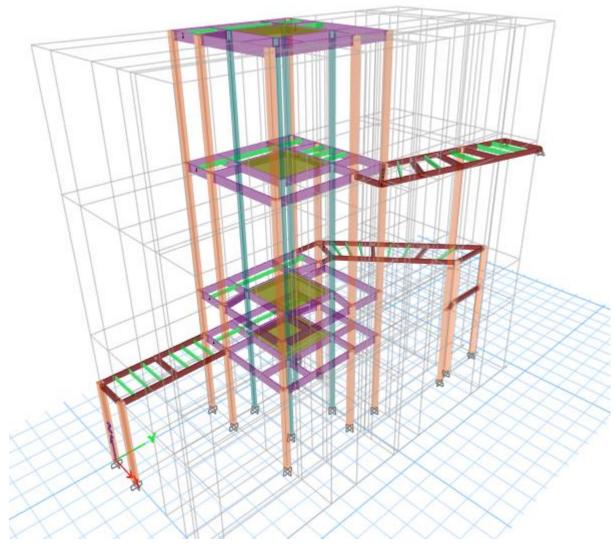


Figura 2. Modelo 3D

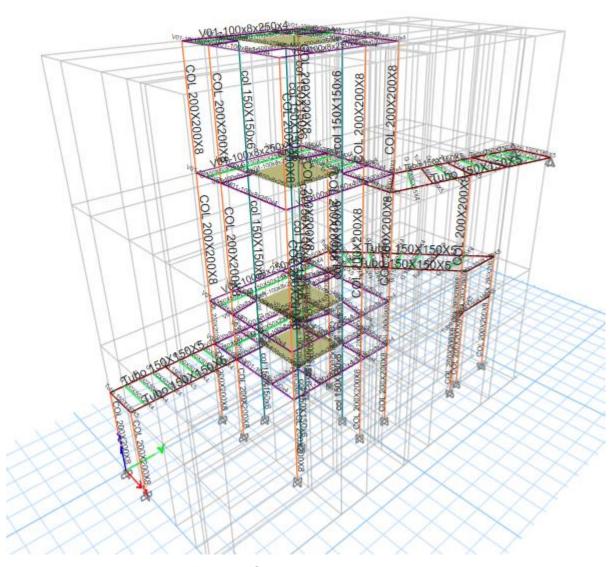


Figura 3. Secciones de la estructura

6.4.1. INGRESO DE CARGAS

Ingreso del porcentaje de Cortante Basal

Figura 4. Ingreso del cortante basal

Peso de la estructura y porcentaje de peso debido al cortante basal.

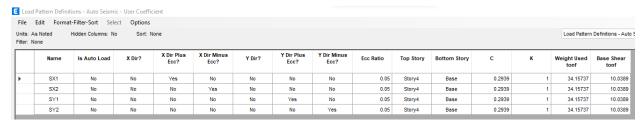


Figura 5. Peso en función del cortante basal

Carga muerta debido a secciones

Material List by Story

File Edit Format-Filter-Sort Select Options
Units: As Noted Hidden Columns: No Sort: None

Filter: None

	Story	Object Type	Material	Weight tonf	Floor Area m²	Unit Weight tonf/m²	Number Pieces	Number Studs
•	Story4	Column	A50	4.30932	4.73	0.911	10	
	Story4	Beam	A36	0.04894	4.73	0.0103	4	(
	Story4	Beam	A50	0.69021	4.73	0.1459	19	
	Story4	Floor	fc 210	0.01137	4.73	0.0024		
	Story3	Column	A50	6.25461	4.73	1.3222	12	
	Story3	Beam	A36	0.58675	4.73	0.124	20	
	Story3	Beam	A50	0.64176	4.73	0.1357	17	
	Story3	Floor	fc 210	0.01137	4.73	0.0024		
	Story2	Column	A50	2.90786	4.73	0.6147	14	
	Story2	Beam	A36	0.54546	4.73	0.1153	17	
	Story2	Beam	A50	0.68562	4.73	0.1449	20	
	Story2	Floor	fc 210	0.01137	4.73	0.0024		
	Story1	Column	A50	6.25473	4.73	1.3222	16	
	Story1	Beam	A36	0.39116	4.73	0.0827	15	
	Story1	Beam	A50	0.68687	4.73	0.1452	20	
	Story1	Floor	fc 210	0.01137	4.73	0.0024		
	Sum	Column	A50	19.72653	18.92	1.0425	52	
	Sum	Beam	A36	1.57231	18.92	0.0831	56	
	Sum	Beam	A50	2.70445	18.92	0.1429	76	
	Sum	Floor	fc 210	0.04546	18.92	0.0024		
	Total	All	All	24.04876	18.92	1.271	184	

Figura 6. Carga muerta por piso

Análisis Espectral (Procedimiento Elástico Dinámico)

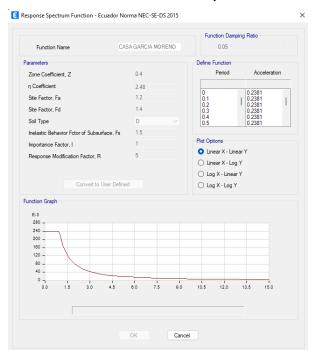


Figura 7. Asignación del espectro

Secciones ocupadas en el diseño

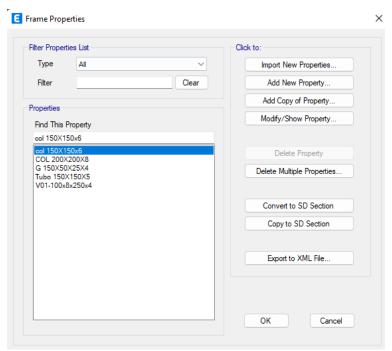


Figura 8. Secciones ocupadas en el diseño

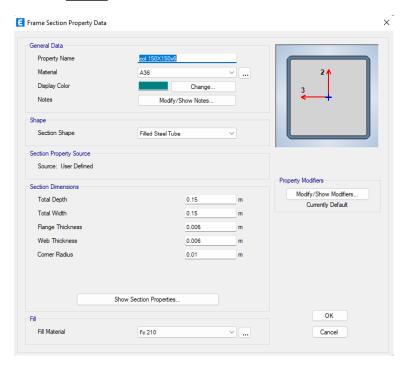


Figura 9. Sección columna 150x150x6

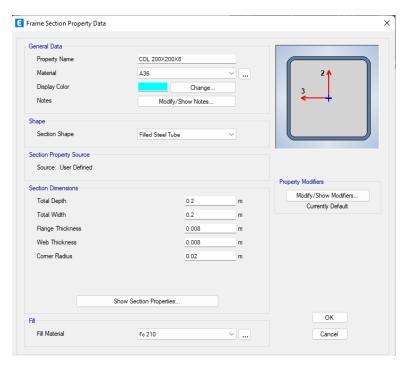


Figura 10. Columna 200X200X8



Figura 11. Tubo 150x150x5

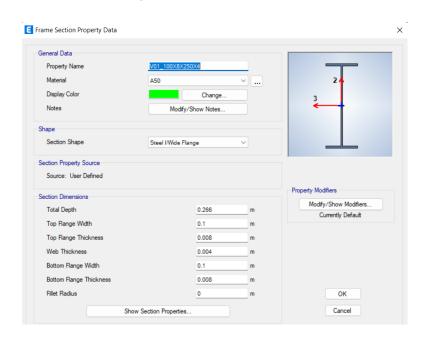


Figura 12. Viga 100x8x250x4

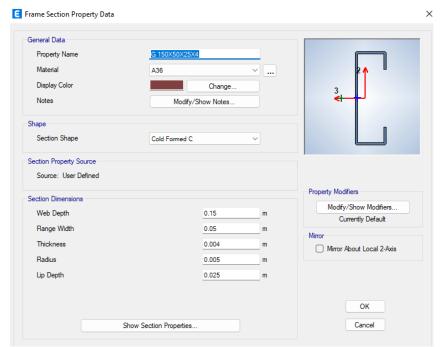


Figura 13. Correa 150x50x25x4

Propiedades de los materiales

Figura 14. Asignación de materiales

Cargas asignadas:

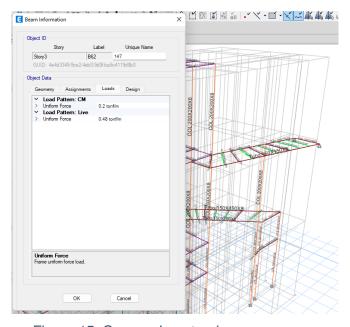


Figura 15. Cargas de entrepiso para correas

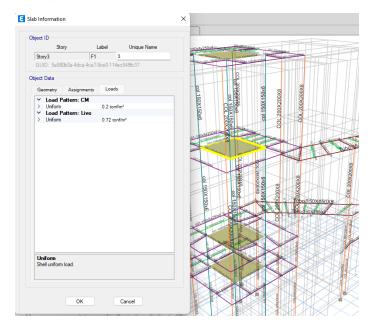


Figura 16. Cargas para ascensor

6.4.2. CONTROL DE DERIVAS.

Cortante por piso con cargas estáticas y espectro

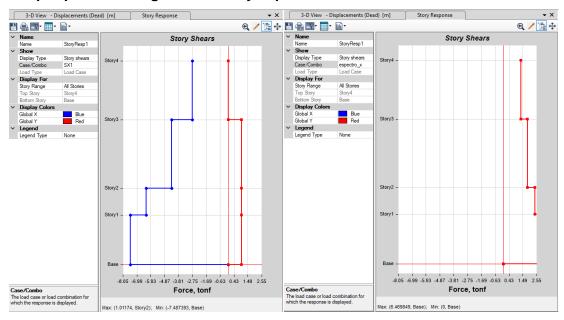


Figura 17. Escalamiento del espectro

Eqx: Sismo en dirección X

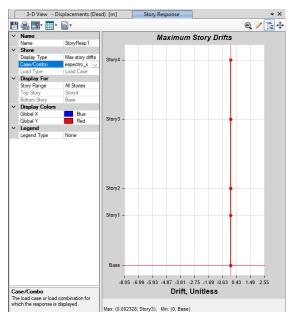


Figura 18. Deriva de piso en dirección X ΔE=0.002328

Eqy: Sismo en dirección Y

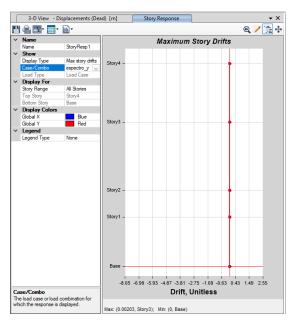


Figura 19. Deriva de piso en dirección Y ΔE=0.00203

Nota: Para comprobar que el cortante dinámico sea al menos el 90 % del cortante estático hay que comprobar los valores en el gráfico de STORY SHEAR.

Como se puede apreciar en los gráficos anteriores, las derivas obtenidas en la estructura se encuentran dentro de los límites permisibles.

 Δ _M \leq 0.02

 Δ _E ≤ 0.0053

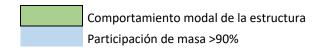
6.4.3. MODOS VIBRATORIOS.

Participación modal de la estructura

		Period							
Case	Mode	sec	UX	UY	UZ	SumUX	SumUY	RZ	SumRZ
Modal	1	0.442	0.3344	0.2107	1.15E-05	0.3344	0.2107	0.1003	0.1003
Modal	2	0.393	0.3321	0.3492	0	0.6665	0.3492	0.1225	0.2228
Modal	3	0.235	0.0007	0.1622	0.0002	0.6672	0.5114	0.2346	0.4574
Modal	4	0.212	0.1053	0.0461	0.0015	0.7725	0.5575	0.1146	0.572
Modal	5	0.185	0.0536	0.1947	0.0001	0.826	0.7522	0.0084	0.5805
Modal	6	0.169	0.1046	0.036	0.0003	0.9306	0.7882	0.1209	0.7014
Modal	7	0.145	0.0065	9.02E-07	0.0007	0.9371	0.7882	0.0462	0.7476
Modal	8	0.138	0.0022	0.0056	0.0343	0.9393	0.7938	0.0088	0.7564
Modal	9	0.128	0.0045	0.027	0.0064	0.9439	0.8207	0.0004	0.7568
Modal	10	0.125	0.011	0.0002	0.0001	0.9549	0.821	0.0232	0.78
Modal	11	0.123	0.008	0.0004	0.0001	0.9629	0.8214	0.0227	0.8027
Modal	12	0.117	0.0015	0.036	0.0001	0.9645	0.8573	0.0005	0.8032
Modal	13	0.112	0.0014	0.0096	0.0013	0.9658	0.867	0.0061	0.8093
Modal	14	0.109	0.0018	0.0063	0.0036	0.9676	0.8733	0.03	0.8392
Modal	15	0.108	0.0005	0.0014	0.0002	0.9682	0.8747	0.0009	0.8402
Modal	16	0.1	0.0003	4.45E-05	0.0008	0.9685	0.8747	0.0022	0.8424
Modal	17	0.093	0.0009	0.0045	0.0001	0.9694	0.8793	0.0079	0.8503
Modal	18	0.09	0.0005	0.0004	0.0016	0.9699	0.8797	0.002	0.8523
Modal	19	0.085	0.0056	0.0018	0.015	0.9755	0.8814	0.0298	0.8821
Modal	20	0.078	0.0013	0.0004	0.0103	0.9768	0.8818	0.0111	0.8932
Modal	21	0.076	0.0003	0.0002	0.0002	0.9772	0.882	0.0025	0.8957
Modal	22	0.074	0.0012	0.0019	0.0009	0.9784	0.8839	0.0142	0.9099
Modal	23	0.071	0.0002	0.0002	4.23E-05	0.9786	0.8842	0.0005	0.9104
Modal	24	0.067	0.0001	0.0009	9.59E-06	0.9787	0.8851	3.69E-06	0.9104
Modal	25	0.067	0.0007	0.0029	9.02E-07	0.9794	0.888	0.0017	0.9122
Modal	26	0.066	2.35E-05	8.64E-06	0.0001	0.9795	0.888	2.28E-05	0.9122
Modal	27	0.062	0.0001	0.0011	0.0009	0.9796	0.8891	0	0.9122
Modal	28	0.061	1.41E-05	0.0002	0.003	0.9796	0.8892	0.0001	0.9123
Modal	29	0.06	0.0002	0.0006	0	0.9798	0.8898	0.0037	0.916
Modal	30	0.059	0.0008	0.0004	0.0006	0.9806	0.8902	0.0018	0.9178

BERNARDO BUSTAMANTE arquitectura + construcción

İ	i i	ì	1	Ī	Ī	i i	i	į	
Modal	31	0.057	0.0002	1.97E-05	0.0313	0.9807	0.8902	4.55E-05	0.9178
Modal	32	0.054	0.0006	0.0002	0.006	0.9813	0.8904	0.0001	0.9179
Modal	33	0.05	0.0003	0.0023	0.0039	0.9816	0.8927	0.0002	0.9182
Modal	34	0.05	2.75E-05	2.36E-05	0.0001	0.9816	0.8927	0.0001	0.9183
Modal	35	0.049	0.0011	2.37E-05	0.0008	0.9828	0.8927	0.0002	0.9184
Modal	36	0.048	2.42E-05	0.0007	2.20E-06	0.9828	0.8934	0.0002	0.9186
Modal	37	0.047	1.02E-06	0.0004	0.0002	0.9828	0.8939	0.0002	0.9189
Modal	38	0.046	0.0001	0.0003	0.0004	0.9829	0.8942	3.75E-05	0.9189
Modal	39	0.043	0.0001	0.0007	3.74E-05	0.983	0.8949	0.0052	0.9241
Modal	40	0.042	0.0017	3.97E-06	0.0006	0.9848	0.8949	0.0012	0.9252
Modal	41	0.042	0.0001	9.50E-06	1.73E-06	0.9848	0.8949	0.0006	0.9259
Modal	42	0.039	0.0009	4.32E-06	0.0005	0.9857	0.8949	0.0008	0.9267
Modal	43	0.037	0.0003	0.0011	0.0002	0.986	0.896	0.0004	0.927
Modal	44	0.037	0.0006	0.0006	0.0001	0.9866	0.8966	0.0012	0.9282
Modal	45	0.036	3.11E-05	0.0008	2.46E-05	0.9866	0.8974	0.0015	0.9297
Modal	46	0.035	0.0001	0.0001	0.0001	0.9867	0.8975	0.0001	0.9298
Modal	47	0.033	0.0006	0.0008	4.17E-06	0.9872	0.8982	0.0015	0.9313
Modal	48	0.032	0.0004	1.34E-05	4.08E-06	0.9876	0.8983	0.0003	0.9316
Modal	49	0.03	0.0036	0.0131	0.0017	0.9912	0.9114	0.0002	0.9318
Modal	50	0.03	0.0013	0.0002	2.42E-05	0.9925	0.9116	0.0005	0.9323
Modal	51	0.029	8.54E-06	1.35E-06	0.0844	0.9925	0.9116	0.0001	0.9324
Modal	52	0.029	2.20E-05	0.0004	0.1828	0.9926	0.912	0.0002	0.9326
Modal	53	0.028	0.0004	0.0071	0.0017	0.993	0.9191	0.0068	0.9394
Modal	54	0.028	0.0001	9.62E-06	0.0002	0.993	0.9191	0.0002	0.9396
Modal	55	0.027	0.0001	0.0007	0.0001	0.9931	0.9198	0.0009	0.9405
Modal	56	0.027	0.0008	0.0352	1.67E-05	0.9939	0.9551	0.0196	0.9601
Modal	57	0.026	1.78E-06	1.06E-06	0.0535	0.9939	0.9551	8.84E-06	0.9601
Modal	58	0.026	5.89E-06	7.58E-06	0.0001	0.9939	0.9551	4.47E-05	0.9602
Modal	59	0.025	0.0003	0.0077	4.17E-05	0.9942	0.9627	0.0036	0.9637
Modal	60	0.025	0.0001	4.03E-05	0.0001	0.9943	0.9628	0.0004	0.9641
Modal	61	0.025	0	0	0.0006	0.9943	0.9628	1.54E-06	0.9641
Modal	62	0.024	1.11E-06	0.0003	0.0001	0.9943	0.9631	0.0001	0.9642
Modal	63	0.023	5.90E-07	9.00E-07	0.0002	0.9943	0.9631	9.19E-06	0.9642
Modal	64	0.022	0	6.41E-06	0.0269	0.9943	0.9631	5.12E-06	0.9642
Modal	65	0.022	4.63E-06	4.73E-05	0.0016	0.9943	0.9631	8.28E-06	0.9642
Modal	66	0.022	1.71E-06	2.39E-06	0.001	0.9943	0.9631	4.57E-06	0.9642
Modal	67	0.022	1.42E-06	5.82E-06	0.0017	0.9944	0.9631	3.62E-06	0.9642
Modal	68	0.021	7.47E-07	1.36E-06	0.1027	0.9944	0.9631	2.70E-06	0.9642
Modal	69	0.021	5.20E-06	2.33E-06	0.0007	0.9944	0.9631	3.06E-05	0.9642
Modal	70	0.02	0	7.59E-07	0.0031	0.9944	0.9631	0	0.9642


BERNARDO BUSTAMANTE arquitectura + construcción

Modal	71	0.02	0	0	0.0016	0.9944	0.9631	0	0.9642
Modal	72	0.02	0	7.30E-07	0.0006	0.9944	0.9631	0	0.9642
Modal	73	0.02	8.57E-06	0	3.00E-06	0.9944	0.9631	0	0.9642
Modal	74	0.02	0	0	0.0113	0.9944	0.9631	0	0.9642
Modal	75	0.019	4.95E-06	1.36E-05	0.0082	0.9944	0.9631	3.65E-06	0.9642
Modal	76	0.018	3.54E-06	1.37E-06	0.0151	0.9944	0.9631	5.65E-07	0.9642
Modal	77	0.018	0.0007	0.0026	0.0017	0.9951	0.9658	0.0001	0.9643
Modal	78	0.018	0.0015	0.0037	0.0022	0.9965	0.9695	0.0001	0.9644
Modal	79	0.018	0.0002	0.0001	0.0013	0.9967	0.9696	9.05E-07	0.9644
Modal	80	0.017	0.0001	3.48E-05	0.0012	0.9968	0.9696	2.48E-05	0.9644
Modal	81	0.017	8.33E-06	2.26E-06	0.0014	0.9968	0.9696	7.33E-06	0.9644
Modal	82	0.017	0.0004	0.0058	0	0.9972	0.9754	0.0186	0.983
Modal	83	0.016	1.81E-06	0.0001	0.0761	0.9972	0.9755	0.0001	0.9831
Modal	84	0.016	0	0.0001	0.0711	0.9972	0.9756	0.0001	0.9833
Modal	85	0.016	1.32E-06	7.23E-06	0.0004	0.9972	0.9756	1.13E-05	0.9833
Modal	86	0.016	0	0	0.0001	0.9972	0.9756	0	0.9833
Modal	87	0.016	0	5.11E-06	0.0282	0.9972	0.9756	4.60E-06	0.9833
Modal	88	0.016	1.34E-06	1.88E-06	0.0002	0.9972	0.9756	1.48E-05	0.9833
Modal	89	0.015	0	0.0001	6.91E-06	0.9972	0.9757	0.0002	0.9836
Modal	90	0.015	0	1.14E-06	0	0.9972	0.9757	0	0.9836
Modal	91	0.015	0	1.36E-06	0.0002	0.9972	0.9757	4.90E-06	0.9836
Modal	92	0.014	0	2.04E-06	1.55E-05	0.9972	0.9757	0	0.9836
Modal	93	0.014	0	2.27E-06	0.0121	0.9972	0.9757	0	0.9836
Modal	94	0.014	0	4.26E-06	2.94E-05	0.9972	0.9757	3.68E-06	0.9836
Modal	95	0.013	0	0	0.0001	0.9972	0.9757	0	0.9836
Modal	96	0.013	0	0	0.0038	0.9972	0.9757	0	0.9836
Modal	97	0.013	0	5.35E-07	0.0178	0.9972	0.9757	1.63E-06	0.9836
Modal	98	0.013	5.09E-07	7.51E-07	1.84E-05	0.9972	0.9757	0	0.9836
Modal	99	0.013	8.99E-06	4.45E-06	0.0107	0.9972	0.9757	6.98E-06	0.9836
Modal	100	0.013	0.0009	0.0013	0.0002	0.9981	0.977	0.0001	0.9837
Modal	101	0.012	0	0	0.0022	0.9981	0.977	0	0.9837
Modal	102	0.012	0	2.57E-06	0.0033	0.9981	0.977	1.13E-06	0.9837
Modal	103	0.012	0	0	3.04E-05	0.9981	0.977	0	0.9837
Modal	104	0.011	5.95E-07	6.47E-06	0.0001	0.9981	0.977	0	0.9837
Modal	105	0.011	0.0003	0.0089	6.55E-06	0.9984	0.9859	0.0045	0.9882
Modal	106	0.011	1.98E-06	3.04E-06	0.0005	0.9984	0.9859	7.59E-06	0.9882
Modal	107	0.011	0	5.68E-06	0.0038	0.9984	0.9859	0	0.9882
Modal	108	0.011	0	0	0.0027	0.9984	0.9859	2.55E-06	0.9882
Modal	109	0.011	0.0001	0.0002	0	0.9985	0.9861	0.0017	0.9899
Modal	110	0.011	0	0	0.0001	0.9985	0.9861	7.88E-07	0.9899

BERNARDO BUSTAMANTE arquitectura + construcción

, .					•	, .			
Modal	111	0.011	0	6.01E-07	0.0088	0.9985	0.9861	0	0.9899
Modal	112	0.011	0	0	0.0073	0.9985	0.9861	0	0.9899
Modal	113	0.01	0	0	3.00E-06	0.9985	0.9861	0	0.9899
Modal	114	0.01	0	0	1.06E-05	0.9985	0.9861	0	0.9899
Modal	115	0.01	0	0	0.0009	0.9985	0.9861	0	0.9899
Modal	116	0.01	1.11E-06	0	0.0001	0.9985	0.9861	0	0.9899
Modal	117	0.01	0	3.37E-06	1.99E-06	0.9985	0.9861	5.81E-06	0.9899
Modal	118	0.009	0	0	7.83E-06	0.9985	0.9861	0	0.9899
Modal	119	0.009	0	0	3.95E-05	0.9985	0.9861	0	0.9899
Modal	120	0.009	0	0	3.96E-05	0.9985	0.9861	7.64E-07	0.9899
Modal	121	0.009	0	0	0	0.9985	0.9861	0	0.9899
Modal	122	0.009	0	0	5.51E-07	0.9985	0.9861	0	0.9899
Modal	123	0.009	0	0	0.0004	0.9985	0.9861	0	0.9899
Modal	124	0.009	0	1.22E-06	0.0001	0.9985	0.9861	1.21E-06	0.9899
Modal	125	0.009	3.26E-06	0	0	0.9985	0.9861	1.40E-05	0.9899
Modal	126	0.009	0.0004	0	5.67E-07	0.9989	0.9861	0.0014	0.9914
Modal	127	0.009	8.45E-07	0	2.94E-05	0.9989	0.9861	2.32E-06	0.9914
Modal	128	0.009	0	0	3.45E-05	0.9989	0.9861	0	0.9914
Modal	129	0.009	0	0	0.0153	0.9989	0.9861	0	0.9914
Modal	130	0.009	0	0	0.0008	0.9989	0.9861	0	0.9914
Modal	131	0.009	0	0	0.0013	0.9989	0.9861	0	0.9914
Modal	132	0.009	0	0	0.0019	0.9989	0.9861	0	0.9914
Modal	133	0.008	0	0	4.01E-05	0.9989	0.9861	0	0.9914
Modal	134	0.008	0	1.27E-06	0.0018	0.9989	0.9861	6.16E-07	0.9914
Modal	135	0.008	0	2.56E-06	0.0001	0.9989	0.9861	0	0.9914
Modal	136	0.008	0	1.21E-06	0.0001	0.9989	0.9861	1.45E-06	0.9914
Modal	137	0.008	0	6.70E-06	4.37E-05	0.9989	0.9861	1.39E-06	0.9914
Modal	138	0.008	0	0	0.0001	0.9989	0.9861	0	0.9914
Modal	139	0.008	0	5.12E-07	4.11E-05	0.9989	0.9861	0	0.9914
Modal	140	0.008	0	0	1.73E-06	0.9989	0.9861	0	0.9914
Modal	141	0.008	0	0	1.24E-05	0.9989	0.9861	5.88E-07	0.9914
Modal	142	0.008	0	0	1.79E-06	0.9989	0.9861	0	0.9914
Modal	143	0.008	4.26E-06	0.0001	1.11E-05	0.9989	0.9862	0.0001	0.9915
Modal	144	0.008	0	8.37E-07	0.001	0.9989	0.9862	0	0.9915
Modal	145	0.008	0	0	0.0002	0.9989	0.9862	0	0.9915
Modal	146	0.008	0	0	0.0012	0.9989	0.9862	0	0.9915
Modal	147	0.008	0	0	2.07E-05	0.9989	0.9862	0	0.9915
Modal	148	0.008	0	0	3.79E-06	0.9989	0.9862	0	0.9915
Modal	149	0.008	0	0	0	0.9989	0.9862	0	0.9915
Modal	150	0.008	0	1.03E-06	0	0.9989	0.9862	0	0.9915

Se puede observar en los resultados anteriores que los dos primeros modos de vibración son traslacionales, lo cual es muy importante en el diseño de la estructura ya que se puede concluir que no existe el problema de torsión en planta.

6.4.4. DISEÑO ESTRUCTURAL DE LOS ELEMENTOS.

Se utilizó el programa ETABS 2019 para el cálculo de fuerzas internas en la estructura con sus diferentes estados de carga, determinando una envolvente para cada elemento estructural como vigas, viguetas, columnas, diafragmas y losas, con lo cual se diseñaron las secciones finales de la estructura.

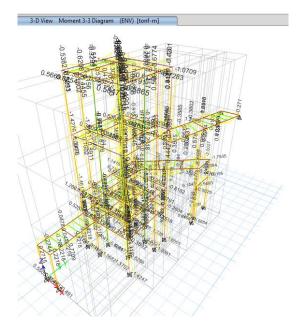


Figura 20. Envolvente de momentos de la estructura

6.4.4.1. VIGAS

Con el objetivo de tener un diseño óptimo en cuanto al costo económico de la estructura, se definieron varios tipos de vigas según sus solicitaciones.

VIGAS

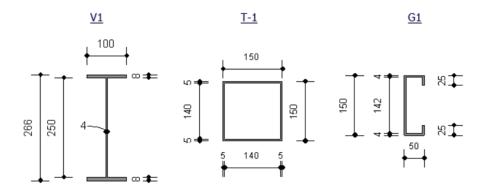


Figura 21. Secciones de viga

Ejemplo de diseño de una viga:

Se determina la máxima solicitación en el elemento en base a las combinaciones de carga antes mencionadas, esto se lo realiza con la ayuda del programa ETABS 2019.

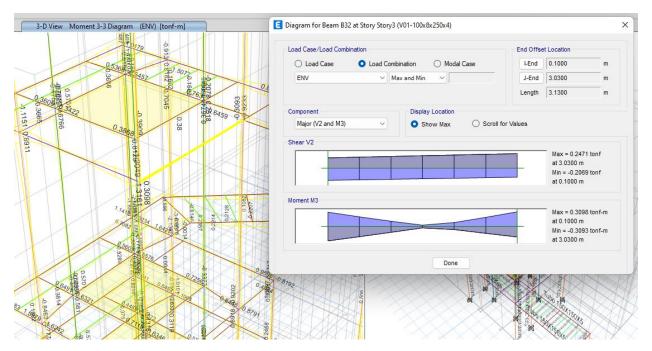


Figura 22. Envolvente de momento y corte de la viga

ETABS Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

Element Details

Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification
Story3	B32	62	3.03	5N 1.2D+EY+0.20S	Ordinary Moment Frame	V01-100x8x250x4	Selsmic MD

LLRF and Demand/Capacity Ratio

L (m)	LLRF	Stress Ratio Limit
3.13000	1	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction	
LRFD	Direct Analysis	General 2nd Order	Tau-b Fixed	

Stiffness Reduction Factors

αPr/Py	αP - /P •	Ть	EA factor	El factor
0.005	0.014	1	8.0	0.8

Seismic Parameters

Ignore Seismic Code?	Ignore Special EQ Load?	Plug Welded?	SDC	1	Rho	Sos	R	Ωο	C.
No	No	Yes	D	1	1	1	6	3	5.5

Design Code Parameters

Фь	Φ.	Фтү	Фтг	Φ.	Ф _{V-RI}	Фут
0.9	0.9	0.9	0.75	0.9	1	1

Section Properties

A (m²)	J (m*)	I 22 (m*)	l 22 (m*)	A _{v2} (m²)	A _{v2} (m²)
0.0026	3.964E-08	0.000032	0.000001	0.0016	0.0011

Design Properties

	S 22 (m²)	S ₂₂ (m²)	Z 22 (m²)	Z 22 (m²)	r 22 (m)	r 22 (m)	C _w (m*)
_	0.000239	0.000027	0.000269	0.000041	0.11067	0.02266	0

Material Properties

E (tonf/m²)	f y (tonf/m²)	Ry	C pr	α
20430000	35200	1	1.139	NA

Stress Check forces and Moments

Location (m)	P u (tonf)	M _{uzz} (tonf-m)	M _{uzz} (tonf-m)	V uz (tonf)	V 😅 (tonf)	T (tonf-m)
3.03	-0.4478	-0.3093	0.1056	0.2471	-0.0545	-9.092E-06

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	K ₁	K ₂	В	B ₂	C m
Major Bending	0.936	1	1	1	1	1
Minor Bending	0.936	1	1	1	1	1

Parameters for Lateral Torsion Buckling

L	Кы	Сь
0.936	1	2.167

Demand/Capacity (D/C) Ratio Eqn.(H1-1b)

D/C Ratio =	(P , /2P _c) + (M _{r22} /M _{c22}) + (M _{r22} /M _{c22})
0.127 -	0.009 + 0.036 + 0.081

Axial Force and Capacities

P . Force (tonf)	φP _{nc} Capacity (tonf)	φP _{nt} Capacity (tonf)
0.4478	24.7427	82.368

Moments and Capacities

	M . Moment (tonf-m)	φM _n (tonf-m)	φM , No LTB (tonf-m)	φM , Cb=1 (tonf-m)
Major Bending	0.3093	8.5188	8.5188	4.5982
Minor Bending	0.1056	1.2989		

Shear Design

	V , Force (tonf)	φV _n Capacity (tonf)	Stress Ratio
Major Shear	0.2471	19.1751	0.013
Minor Shear	0.0545	30.4128	0.002

End Reaction Major Shear Forces

Left End Reaction (tonf)	Load Combo	Right End Reaction (tonf)	Load Combo
-0.5923	5N 1.2D+Ex+0.20S	0.6292	5N 1.2D+Ex+0.20S

Figura 23. Momento de diseño de la viga

Datos obtenidos por el programa

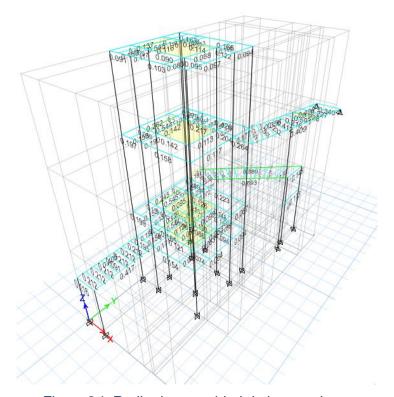


Figura 24. Radio de capacidad de las secciones

6.4.4.2. **COLUMNAS RELLENAS**

De igual manera que en el diseño de vigas, se determina una envolvente de cada fuerza interna presente en el elemento, con lo cual se procede a realizar el diseño final. Se usó el programa ETABS 2019 para determinar la capacidad última de las columnas y chequear que sean idóneas para resistir las solicitaciones.

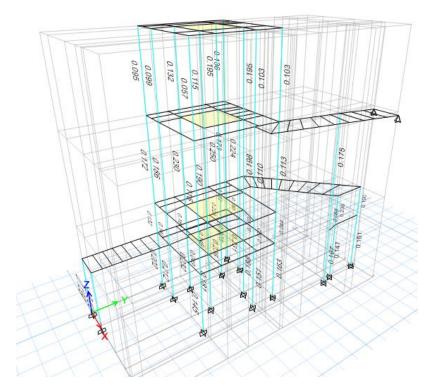
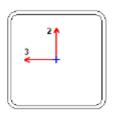



Figura 25. Capacidad de las secciones

ETABS Composite Column Design

AISC 360-10 Composite Steel Section Check (Strength Summary)

Element Details

Level	Element	Unique Name	Location (m)	Combo	Section	Classification
Story3	C2	6	0	5N 1.2D+Ex+0.20S	COL 200X200X8	Compact

LLRF and Demand/Capacity Ratio

L (m)	LLRF	Stress Ratio Limit
4.78000	1	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction
LRFD	Direct Analysis	General 2nd Order	Tau-b Fixed

Stiffness Reduction Factors

αP ,/P ,	αP,/P.	
0.024	0.014	

Seismic Parameters

Ignore Seismic Code?	Ignore Special EQ Load?	Plug Welded?
No	No	Yes

Design Code Parameters

Φ.	Φ.	Фтү	Фт	Фу	Ф _{V-RI}	Ф ут
0.9	0.75	0.9	0.75	0.9	1	1

Design Properties of Steel Section

A (m²)	J (m*)	l == (m*)	l 22 (m*)	A v2 (m²)	A v2 (m²)
0.0059	0.000057	0.000036	0.000036	0.003	0.0031

Material Properties

E (tonf/m²)	f' c (tonf/m²)	F y (tonf/m²)
20430000	2100	35200

Demand/Capacity (D/C) Ratio Eqn.(H1-1b)

D/C Ratio =	$(P_{r}/2P_{c}) + (M_{r22}/M_{c22}) + (M_{r22}/M_{c22})$
0.113 =	0.016 + 0.07 + 0.027

Stress Check forces and Moments

Location (m)	P (tonf)	M 🕰 (tonf-m)	M _{uzz} (tonf-m)	V uz (tonf)	V 😅 (tonf)	T (tonf-m)
0	-4.9169	0.9959	-0.3869	-0.3274	-0.1766	0

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	K ₁	K z	B ₁	B ₂	C m
Major Bending	0.944	1	1	1	1	1
Minor Bending	0.944	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Lь	Къ	Сь
0.944	0	2.571

Axial Force and Capacities

P - Force (tonf)	φP ≈ Capacity (tonf)	φP ≈ Capacity (tonf)
4.9169	154.4096	187.2631

Moments and Capacities

	M . Moment (tonf-m)	φM _n Capacity (tonf-m)	φM _n (No LTB) (tonf-m)
Major Bending	0.9959	14.2527	14.2527
Minor Bending	0.3869	14.2527	

Torsion Moment and Capacities

T Moment (tonf-m)	T , Capacity (tonf-m)	φT _n Capacity (tonf-m)
0	12.4153	11.1738

Shear Design

	V , Force (tonf)	φV _n Capacity (tonf)
Major Shear	0.3274	53.5265
Minor Shear	0.1766	53.5265

Figura 26. Momento de diseño de columna

Momento último resistente ϕ Mn = 14.25T-m ϕ Mn \geq Mu = 14.25 \geq 0.9959 T-m. O.K

Se asume un correcto dimensionamiento de columnas en base a los cálculos antes mencionados; cabe recalcar que los valores de radio, Demanda / Capacidad son inferiores a 1, estos resultados se los determinó en el programa ETABS 2019 el mismo que lo realiza con la siguiente ecuación:

$$\frac{D}{C} = \frac{Pr}{2Pc} + \left(\frac{Mrx}{Mcx}\right) + \left(\frac{Mry}{Mcy}\right) \le 1 \qquad O.K$$

7. CIMENTACIÓN

El diseño de la cimentación se lo realizó en el software SAFE 2020 posterior a la exportación de las cargas desde ETABS 2019.

La carga admisible de suelo según el estudio de suelos es de 16.50 t/m²

Ejemplo de diseño de losa de cimentación

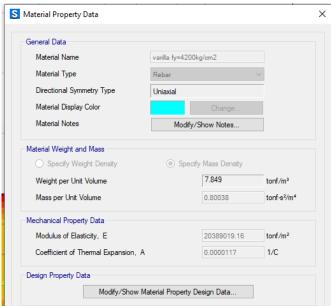


Figura 27. Definición de materiales

Espesor para elementos de cimentación

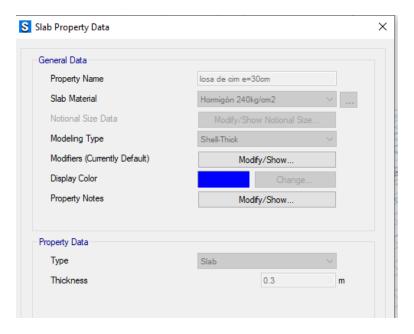


Figura 28. Definición espesor de elementos de cimentación

Parámetros de suelo

Figura 29. Definición parámetros de suelo

Cargas en elementos de cimentación

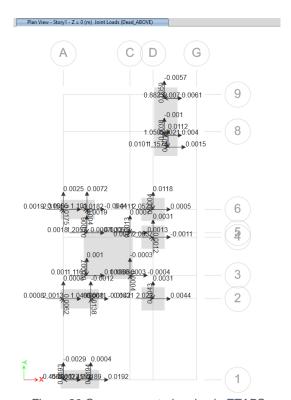


Figura 30. Cargas exportadas desde ETABS

Esfuerzos en losa de cimentación

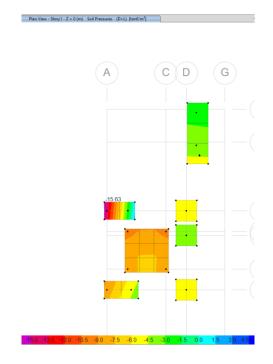


Figura 31. Esfuerzos producidos por combinación D+L

Figura 32. Esfuerzos producidos por combinación D+L+S

Se puede evidenciar que el esfuerzo producido en la losa de cimentación es inferior al soportado por el suelo, por lo tanto, se da por aprobado el diseño.

VERIFICACIÓN POR PUNZONAMIENTO

3-D View

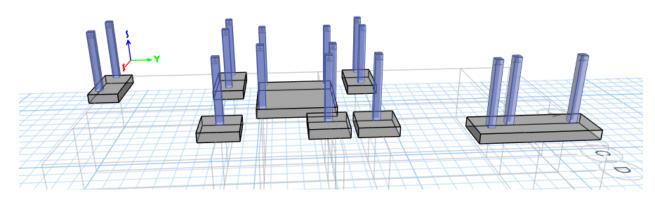


Figura 33. Planta de verificación de punzonamiento

3-D View Punching Shear D/C Ratios/Shear Reinforcement

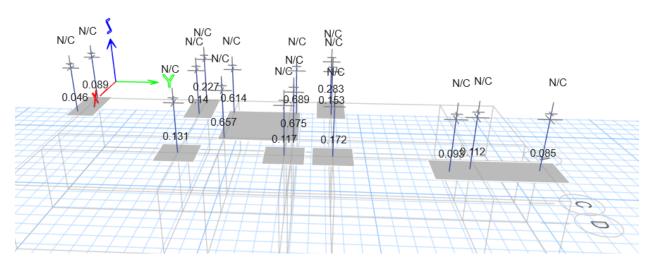
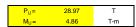


Figura 34. Verificación de punzonamiento


Como se puede verificar, los valores de punzonamiento en la cimentación son inferiores a 1, por lo cual, la cimentación cumple con las condiciones.

CÁLCULO DE PLACAS

CÁLCULO PB-1

	Datos	
h1	20	cm
h2	20	cm
t1	0.8	cm
t2	0.8	cm

2.1.3 CONSIDERANDO CARGAS AXIALES Y MOMENTO FLECTOR CON DISTRIBUCIÓN TRIANGULAR DE ESFUERZOS

PASO 1. Determinar las dimensiones N v B de la placa base, para realizar la 1ra iteración.

Fuente: Base Plate and Anchor Rod Design - Second Edition - Norma AISC

Donde

N = Longitud de la placa base, [cm]

m, m° = Dimensión del volado de la placa base paralela a la longitud de la placa base y a la aplicación del momento. La longitud "m" es la distancia entre el borde de la placa y la columna, y "m" es la distancia entre los atlesadores, se debe hacer el cálculo para las dos dimensiones y de esta manera saber que distancia produce el mayor momento en la placa base (cm).

m=	0.075	m			
m'=	0.075	m			
n=	0.075	m			
n'=	0.075	m			
N=	0.35	m			
B=	0.35	m			

dis. Entre el borde de la placa y la columna, en la dirección de la long. De la placa (N)

dis. Entre atiesadores.

lo mismo que m y m' pero en la dirección del ancho de la placa (B)

lo mismo que m y m' pero en la dirección del ancho de la placa (B)

Longitud de la placa base Ancho de la placa base

PASO 2. Determinar la excentricidad.

0.168 m 0.2032

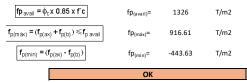
19.05

PASO 3. Determinar la excentricidad crítica.

e kern= 0.058 m 0.0592

*NOTA: EXISTEN TENSIÓN ENTRE LA PLACA Y LA CIMENTACIÓN e > ekern

PASO 4. Calcular la base de presiones.

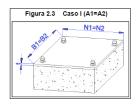

Debido a la compresión axial:

$$fpu_{(ax)} = \frac{Pu}{B \times N}$$
 $fp_{(ax)} = 236.49$ T/m2

Debido a la aplicación de momento

$$S_{pl} = \frac{B \times N^2}{6}$$
 $S_{pl} = 0.007$ m3
$$f_{p(b)} = \frac{Mu}{S_{pl}}$$
 $f_{p(b)} = 680.12$ $T/m2$

Debido a la combinación de fuerzas:



O.K

PROCEDIMIENTOS DE DISEÑO PARA SECCIONES I y SECCIONES HSS ; e > e_{crit}

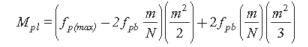
PASO 4. Calcular la resistencia del hormigón.

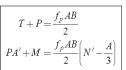
CASO I (A1=A2)

φ _c Pp=	162.4	Ton
f _{pu} =	1326.0	Ton/m2

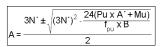
ОК

CASO II (A2>=4A1) o CASO III (A1<A2<4A1)

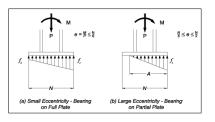


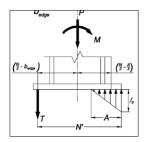


N2=	0.35	m
B2=	0.35	m
A2 =	0.1225	m2


φ _c Pp=	162.4	Ton
f _{pu} =	1326.0	Ton/m2

ОК


PASO 5. Calcular la longitud de cortante.



A': Distancia entre la varilla de anclaje y el centro de la columna.

N': Distancia entre el centro del perno en tensión y la presión máxima de la distribución de presiones.

CASO:	CASO I
1326.00	Ton/m2
0.1	m
0.28	m
0.68	m
0.15	m
0.15	m
	0.1 0.28 0.68 0.15

PASO 6. Determinar la fuerza resultante de tensión del perno.

_ f _{ou} x A x B _			
Tu= 'pu AAAB - Pu	Tu=	5.4122	Ton
2			

ASO 7. Determinar el esfuerzo de flexión

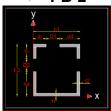
f_{p(m)}= 654.79882 Ton/m2

PASO 8. Calcular los momentos críticos de la placa base.

$M_{\text{upl}} = f_{p(m)} \times \frac{m^2}{2} + \frac{(fp)^2}{2}$	ou-f _{p(m)}):	× m ²
Mu _{pi} =	3.10	Ton-m
Mu _{pl} =	3.10	Ton-m
Mu -	2 10	Ton m/m

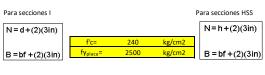
PASO 9. Calcular el espesor requerido para la placa base.

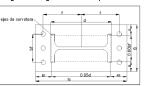
$$t_{\text{req}} = \sqrt{\frac{4 \times M_{\text{upl}}}{\phi_{\text{b}} \times \text{Fy}}}$$


t_{req}= 23.48 mm

43

Se adopta un espesor de 25 mm




	Datos	
h1	13	cm
h2	13	cm
t1	0.6	cm
t2	0.6	cm

2.1.3 CONSIDERANDO CARGAS AXIALES Y MOMENTO FLECTOR CON DISTRIBUCIÓN TRIANGULAR DE ESFUERZOS

Fuente: Base Plate and Anchor Rod Design – Second Edition – Norma AISC

N = Longitud de la placa base, [cm]

m, m' = Dimensión del volado de la placa base paralela a la longitud de la placa base y a la aplicación del momento. La longitud "m" es la distancia entre el borde de la placa y la columna, y "m" es la distancia entre los atiesadores, se debe hacer el cálculo para las dos dimensiones y de esta manera saber que distancia produce el mayor momento en la placa base, [cm]

19.05

m=	0.075	m		
m'=	0.075	m		
n=	0.075	m		
n'=	0.075	m		
N=	0.30	m		
B=	0.30	m		

dis. Entre el borde de la placa y la columna, en la dirección de la long. De la placa (N)

dis. Entre atiesadores.

lo mismo que m y m' pero en la dirección del ancho de la placa (B)

lo mismo que m y m' pero en la dirección del ancho de la placa (B)

Donde

Longitud de la placa base Ancho de la placa base

0.2032 0.137

PASO 3. Determinar la excentricidad crítica.

e kern= 0.050 0.0592

EXISTEN TENSIÓN ENTRE LA PLACA Y LA CIMENTACIÓN e > ekern

PASO 4. Calcular la base de presid

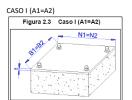
Debido a la compresión axial:

$$\boxed{ \text{fpu}_{(ax)} = \frac{\text{Pu}}{\text{B x N}} } \qquad \text{fp}_{(ax)} = \qquad \text{68.78} \qquad \text{T/m2}$$

Debido a la aplicación de momento:

$$\boxed{ \mathbf{S}_{pl} = \frac{\mathbf{B} \times \mathbf{N}^2}{6} } \qquad \text{Spl=} \qquad 0.005 \qquad \text{m3}$$

$$\boxed{ \mathbf{f}_{p(b)} = \frac{\mathbf{M}\mathbf{U}}{\mathbf{S}_{pl}} } \qquad \mathbf{fp_{(b)}} = \qquad \mathbf{188.89} \qquad \mathbf{T/m2}$$


Debido a la combinación de fuerzas:

$fp_{\text{avail}} = \phi_c x \ 0.85 \ x \ f'c$	fp _(avail) =	1326	T/m2
$f_{p(m \land x)} = (f_{p(ax)} + f_{p(b)}) \leqslant f_{p \text{ avail}}$	fp _(máx) =	257.67	T/m2
$\boxed{\mathbf{f}_{p(min)} = (\mathbf{f}_{p(ax)} - \mathbf{f}_{p(b)})}$	fp _(min) =	-120.11	T/m2
	ОК		

PROCEDIMIENTOS DE DISEÑO PARA SECCIONES I y SECCIONES HSS ; e > e_{crit}

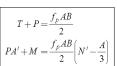
PASO 4. Calcular la resistencia del hormigón.

 $\phi_c Pp = \phi_c 0.85 f' cA1$

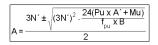
A1=	0.09	m2	
cPp=	119.3	Ton	

1326.0 Ton/m2

CASO II (A2>=4A1) o CASO III (A1<A2<4A1) Caso II (A2 ≥ 4A1) O CASO III (A1 < A2 < 4A1)

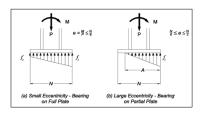


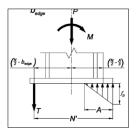
N2=	0.30	m
B2=	0.30	m
A2 =	0.09	m2


φ _c Pp=	119.3	Ton
f _{pu} =	1326.0	Ton/m2

OK

$M_{pl} = \left(f_{p(max)} - 2 \right)$	$f_{pb} \frac{m}{N} \left \frac{m^2}{2} \right $	$+2f_{pb}$
--	---	------------

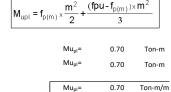



PASO 5. Calcular la longitud de cortante.

A': Distancia entre la varilla de anclaje y el centro de la columna. N': Distancia entre el centro del perno en tensión y la presión máxima de la distribución de presiones.

	CASO:	CASO I
f _{pu} =	1326.00	Ton/m2
A'=	0.075	m
N'=	0.23	m
A= A=	0.64	m
A=	0.03	m
A=	0.03	m

PASO 6. Determinar la fuerza resultante de tensión del perno.



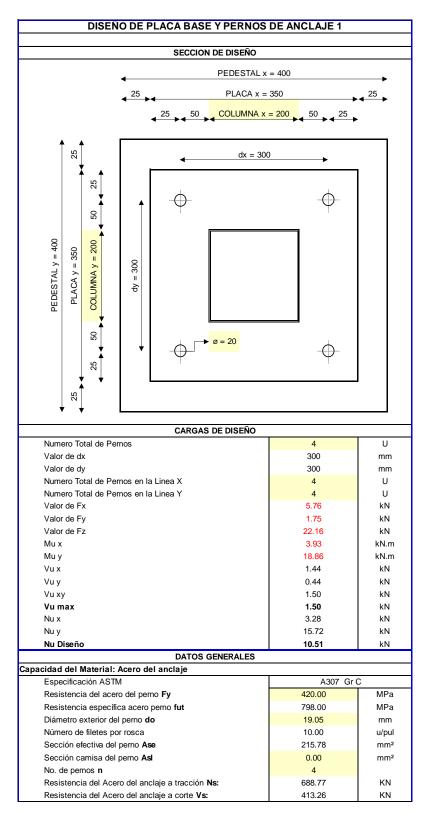
ASO 7. Determinar el esfuerzo de flexión

f_{p(m)}= -1906.075 Ton/m2

PASO 8. Calcular los momentos críticos de la placa base.

PASO 9. Calcular el espesor requerido para la placa base.

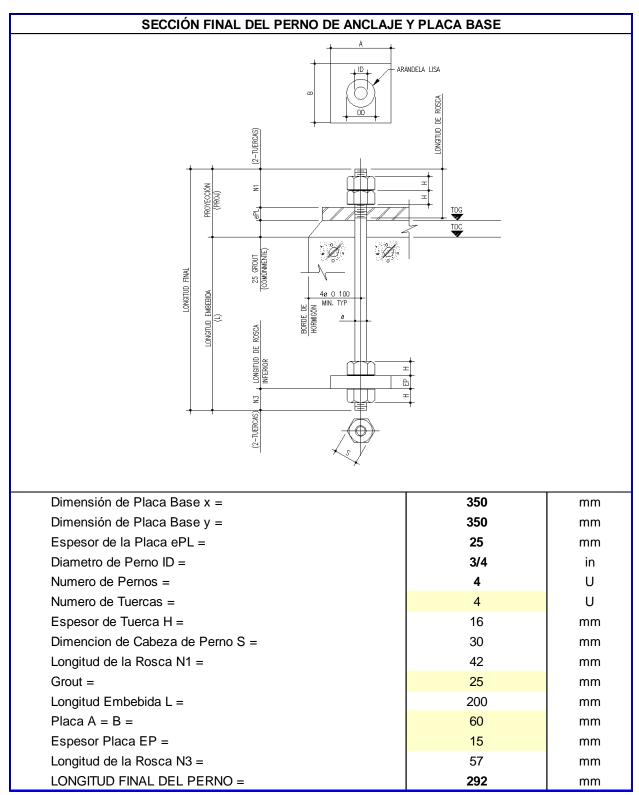
$$t_{\text{req}} = \sqrt{\frac{4 \times M_{\text{upl}}}{\phi_{\text{b}} \times \text{Fy}}}$$


t_{req}= 11.15 mm

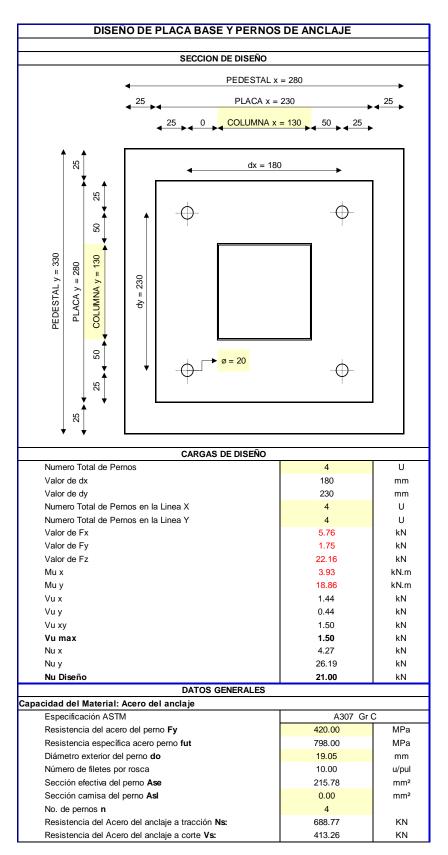
Se adopta un espesor de 12mm

CÁLCULO DE PERNOS

• PB-1



pacidad del Material: Hormigón		-
Resistencia hormigón f'c	24.00	MPa
Resistencia del acero de refuerzo Fy	420.00	MPa
Lado de la cimentación L	400	mm
Lado de la cimentación L'	400	mm
Area de falla del hormigón An	160000.00	mm²
Area de falla del hormigón Ano	90000.00	mm²
Area de falla del hormigón Av	146250.00	mm²
Area de falla del hormigón Avo	11250.00	mm²
Excentricidad a tracción e`n	0.00	mm
Excentricidad a corte e`v	0.00	mm
Distancia borde perno c real	50.00	mm
Distancia borde perno c/1.5	33.33	mm
Distancia borde perno c'	50.00	mm
Distancia borde perno c'/1.5	33.33	mm
Distancia borde perno c7 1.3 Distancia perpendicular borde perno c2	50.00	mm
Distancia perpendicular borde perno c ₂ /1.5	33.33	mm
Distancia perpendicular borde perno c2/1.5 Distancia perpendicular borde perno c2'	50.00	mm
	33.33	
Distancia perpendicular borde perno c ₂ ·/1.5 Altura de cimentacion h	400	mm
		mm
Altura de cimentacion h/1.5 DISEÑO DE PLACA BASE	266.67	mm
Base de la columna dw	200	mm
Altura de la columna bf	200	mm
Resistencia del acero de la placa Fy	250000	KN/m ²
fph	8400	KN/m ²
Fb	187500	KN/m ²
Base de la placa Xpl	350	mm
Altura de la placa Ypi	350	mm
Excentricidad ex	851.08	mm
Excentricidad ey	177.35	mm
Exentricidad crítica ecrit	58.33	mm
Esfuerzo máximo en la placa fpmax(X)	2820.20	KN/m ²
Esfuerzo máximo en la placa fpmax(Y)	730.87	KN/m ²
Esfuerzo mínimo en la placa fpmin(X)	-2458.40	KN/m ²
Esfuerzo mínimo en la placa fpmin(Y)	-369.07	KN/m ²
Fuerza en la placa px	15081.72	KN/m
Fuerza en la placa py	3142.69	KN/m
Distancia de la cara de la columna al borde de la placa xI	75	mm
Distancia de la cara de la columna al borde de la placa yl	75	mm
fmax (X)	2820.20	KN/m ²
fmax (Y)	730.87	KN/m ²
Momento en la placa por metro Mborde X	7.93	KN.m/m
Momento en la placa por metro Mborde Y	2.06	KN.m/m
	2.78	KN.m
	2.10	
Momento total en la placa Mtot X	0.72	L/N .~~
Momento total en la placa Mtot Y Espesor de Placa Base ePL	0.72 9.43	KN.m mm


	DISEÑO	DE PERNOS DE ANCLA	AJE	
Distancia entre	e pernos s		300	mm
Distancia entre	e pernos s/3		100.00	mm
Distancia entre	e pernos exterior so		300	mm
Factor de mod	lificación λ		1	
Factor de mod	lificación Ψe		1	
Longitud de de	esarrollo Id		310.31	mm
-	ectiva del perno hef		200	mm
	ectiva del perno hef ca	Iculado	100.00	mm
	e perno c calculada	.ouiuuo	50	mm
Distancia del g			80	mm
-	oyo de la carga I		152.4	mm
esistencia a la Tra	, , , , , , , , , , , , , , , , , , , ,		102.4	
	desprendimiento k		10.00	
Factor de mod			1.00	
Factor de mod			0.75	
Factor de mod			1.25	
		NIL.		KN
	ásica desprendimiento l		48.99	
		nigón del anclaje Ncgb	81.65	KN
	va cabeza perno Abrg		587.98	mm²
Factor de mod	.,		1.00	
Resistencia al	arrancamiento cabeza	Np	112.89	KN
Resistencia al	arrancamiento gancho	Np j	32.92	KN
Resistencia a	la extracción por desliz	amiento del anclaje Npr	451.57	KN
Coeficiente res	sistencia al desprendim	iento Nsbg	2.00	
	sistencia al desprendim	_	1.00	
	desprendimiento latera			
anclaje con ca		- 5	77.22	KN
Coeficiente * N	· ·		154.43	KN
sistencia al Corte			2.55.50	
Factor de mod			1.00	
Factor de mod			0.90	
Factor de mod	,-		1.00	
	.,			
Factor de mod	,.		1.00	141
	ásica al arrancamiento	Vb	7.56	KN
	arrancamiento Vcbg		88.48	KN
	desprendimiento del ho	rmigón por cabeceo del	2.00	
anclaje kcp				
Resistencia al	desprendimiento del ho	ormigón por cabeceo		KN
	p	- '	163.30	KN
Resistencia al del anclaje Vc	p RESUME	N DE PERNOS DE ANCL	163.30	KN
Resistencia al del anclaje Vc Factor de	RESUMEI Cargas de tracción =	N DE PERNOS DE ANCL	163.30	KN
Resistencia al del anclaje Vc Factor de Factor	RESUMEI Cargas de tracción = de Cargas de corte =	0.75 0.65	163.30 AJE	KN
Resistencia al del anclaje Vc Factor de Factor Esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante	0.75 0.65	163.30	KN
Resistencia al del anclaje Vo Factor de Factor Esfuerzo: Nu máx=	P RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN)	0.75 0.65	163.30 .AJE binación de carga	KN
Resistencia al del anclaje Volumbra del anclaje Volumbra del Factor de Factor Esfuerzo Nu máx=	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante	0.75 0.65	163.30 AJE	KN
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	P RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN)	0.75 0.65 Com	163.30 .AJE binación de carga	KN
Resistencia al del anclaje Volumbra del anclaje Volumbra del Factor de Factor Esfuerzo Nu máx=	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) Esfuerzo Calcul	0.75 0.65 Com	163.30 .AJE binación de carga D+0.7ESPy Max	
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) Esfuerzo Calcul	0.75	163.30 .AJE binación de carga D+0.7ESPy Max	
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul:	0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno	163.30 AJE binación de carga D+0.7ESPy Max condición	Cumple
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño ΦNs=516.58 (K	N DE PERNOS DE ANCL 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N)	163.30 .AJE binación de carga D+0.7ESPy Max	
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó	N DE PERNOS DE ANCL 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N)	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs	Cumple
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigé ETAPA 2 : Resiste	N DE PERNOS DE ANCL 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: ncia al arrancamiento de	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje	Cumple
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: noia al arrancamiento de (N)	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤Φ Ncgb	Cumple
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k	N DE PERNOS DE ANCL 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: ncia al arrancamiento de	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤Φ Ncgb	Cumple
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k	n DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: notia al arrancamiento de (N) notia a la extracción por o	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤Φ Ncgb	Cumple
Resistencia al del anclaje Vcj Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k ETAPA 3 : Resiste ΦNpn=338.68 (k	n DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: notia al arrancamiento de (N) notia a la extracción por o	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤ΦNcgb deslizamiento del ancla	Cumple SI SI Si aje SI
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k ETAPA 3 : Resiste ΦNpn=338.68 (k	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) ncia al arrancamiento de (N) ncia a la extracción por o (N) ncia al desprendimiento	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤ΦNcgb deslizamiento del ancla	Cumple SI SI Si aje SI
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) Esfuerzo Calcul: ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (K ETAPA 3 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) ncia al arrancamiento de (N) ncia a la extracción por o (N) ncia al desprendimiento	hinación de carga D+0.7ESPy Max Condición Nu≤ΦNs Il hormigón del anclaje Nu≤ΦNcgb deslizamiento del ancl. Nu≤ΦNpn lateral del hormigón de	Cumple SI SI aje SI ol anclaje con c
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (K ETAPA 3 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: notia al arrancamiento de (N) notia a la extracción por o (N) notia al desprendimiento (KN) Conclusio	hinación de carga D+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤ΦNcgb deslizamiento del ancla Nu≤ΦNpn lateral del hormigón de Nu≤ΦNsbg	Cumple SI SI aje SI ol anclaje con c
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k ETAPA 3 : Resiste ΦNpn=338.68 (k ETAPA 4 : Resiste ΦNsbg=115.82 (k ETAPA 1 :	ANDE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) con: nota al arrancamiento de (N) nota a la extracción por o (N) concia al desprendimiento (KN) Conclusio El perno r	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs Il hormigón del anclaje Nu≤ΦNcgb deslizamiento del ancl: Nu≤ΦNpn lateral del hormigón del Nu≤ΦNsbg nes esiste a tracción	Cumple SI SI aje SI al anclaje con ci
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : ETAPA 2 : EI	A DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del pemo N) n: ncia al arrancamiento de (N) Ncia a la extracción por o (N) ncia al desprendimiento (N) Conclusió El perno r hormigón resiste al arra	hormigón del anclaje Nu≤ΦNs I hormigón del anclaje Nu≤ΦNpn Iateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje	Cumple SI SI aje SI al anclaje con ci
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (K ETAPA 3 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : ETAPA 1 : ETAPA 2 : EI	A DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) ncia al arrancamiento de (N) ncia a la extracción por o (N) ncia al desprendimiento (N) Conclusio El perno r hormigón resiste al arra	hormigón del anclaje Nu≤ΦNs I hormigón del anclaje Nu≤ΦNpn Iateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del	SI SI aje SI SI aje I Anclaje con c
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (K ETAPA 3 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : ETAPA 1 : ETAPA 2 : EI	Ando CODISENS A PRINCIPAL STATE OF THE PRINCI	hormigón del anclaje Nu≤ΦNs I hormigón del anclaje Nu≤ΦNpn Iateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del	SI SI aje SI al anclaje con ci SI en tracción anclaje a tracció
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño	ANDE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) no: noia al arrancamiento de (N) noia a la extracción por o (N) Conclusio El perno homigón resiste al a extracción nigón resiste al desprenci	hormigón del anclaje Nu≤ΦNs I hormigón del anclaje Nu≤ΦNpn Iateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del	SI SI aje SI al anclaje con ci SI en tracción anclaje a tracció
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k ETAPA 3 : Resiste ΦNpn=338.68 (k ETAPA 4 : Resiste ΦNsbg=115.82 (l ETAPA 1 : ETAPA 2 : EI ETAPA 2 : EI ETAPA 4 : EI horm ETAPA 4 : EI horm	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de KN) N nocia al aextracción por o KN) Conclusio El perno r hormigón resiste al aextracción nigón resiste al desprenc	163.30 AJE binación de carga D+0.7ESPy Max condición Nu≤ΦNs Il hormigón del anclaje Nu≤ΦNcgb deslizamiento del ancla inu≤ΦNbp lateral del hormigón del Nu≤ΦNbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del dimiento lateral del anc	SI SI aje SI al anclaje con ca noclaje a tracción anclaje con cabeza
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul: ETAPA 1 : Diseño	A DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) noia al arrancamiento de (N) noia a la extracción por o (N) Conclusión El perno r hormigón resiste al arra igón resiste al atracción igón resiste al desprenc Diseño a Corte del perno N)	hormigón del anclaje Nu≤ΦNs I hormigón del anclaje Nu≤ΦNpn Iateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del	SI SI aje SI al anclaje con ci SI en tracción anclaje a tracció
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : ETAPA 2 : EI ETAPA 1 : ETAPA 2 : EI ETAPA 1 : ETAPA 3 : EI horm ETAPA 4 : EI horm ETAPA 4 : EI horm ETAPA 5 : EI ETAPA 6 : EI ETAPA 6 : EI ETAPA 7 : EI ETAPA 8 : EI ETAPA 9 : EI ETAPA 9 : EI ETAPA 1 : EI ETAPA 1 : Diseño ΦVs=268.62 (K Diseño del hormigó	A DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de (N) nocia al arrancamiento de (N) nocia al desprendimiento (N) Conclusió El perno r hormigón resiste al arra igón resiste al desprenc Diseño a Corte del perno N) nocia al cextracción por o conclusió El perno r hormigón resiste al desprenc Diseño a Corte del perno N)	LAJE binación de carga DD+0.7ESPy Max condición Nu≤ΦNs Il hormigón del anclaje Nu≤ΦNcgb deslizamiento del anclai lateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del	SI SI SI aje SI anclaje con co
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (K ETAPA 3 : Resiste ΦNsbg=115.82 (C ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : ETAPA 2 : EI ETAPA 2 : EI ETAPA 4 : EI horm ETAPA 4 : EI horm ETAPA 4 : EI horm ETAPA 5 : EI horm ETAPA 6 : EI horm ETAPA 6 : EI horm ETAPA 7 : EI horm ETAPA 8 : EI horm ETAPA 9 : EI horm ETAPA 9 : EI horm ETAPA 1 : EI horm ETAPA 2 : EI	A DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) ncia al arrancamiento de (N) ncia a la extracción por o (N) ncia al desprendimiento (N) Conclusio El perno r hormigón resiste al arran igón resiste al desprence Diseño a Corte del perno N) ncia del perno N) ncia del perno Diseño a Corte del perno N) ncia básica al arrancamiento	Interest of the second of th	Cumple SI SI aje SI el anclaje con ci SI en tracción anclaje a tracció daje con cabeza
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) on: nocia al arrancamiento de (N) nocia al a extracción por o (N) Conclusio El perno r hormigón resiste al arranicamiento de injeón resiste al desprencioningón resiste al arrancamiento de la perno.	LAJE binación de carga DD+0.7ESPy Max condición Nu≤ΦNs Il hormigón del anclaje Nu≤ΦNcgb deslizamiento del anclai lateral del hormigón del Nu≤ΦNsbg mes esiste a tracción ncamiento del anclaje n por deslizamiento del	SI SI SI aje SI anclaje con co
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño	A DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) ncia al arrancamiento de (N) ncia a la extracción por o (N) ncia al desprendimiento (N) Conclusio El perno r hormigón resiste al arran igón resiste al desprence Diseño a Corte del perno N) ncia del perno N) ncia del perno Diseño a Corte del perno N) ncia básica al arrancamiento	Interest of the second of th	Cumple SI SI aje SI el anclaje con c SI en tracción anclaje a tracció daje con cabeza
Resistencia al del anclaje Vc Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de (N) nocia al aextracción por o (N) Conclusio El perno r hormigón resiste al arrai igón resiste al desprenci nigón resiste al desprenci Diseño a Corte del perno N) nocia abiaca al arrancami del perno Diseño a Corte del perno N) nocia abásica al arrancami del perno nocia básica al arrancami del perno nocia básica al arrancami del perno nocia básica al arrancami	Interest of the second of th	Cumple SI SI aje SI el anclaje con c SI en tracción anclaje a tracció daje con cabeza
Resistencia al del anclaje Vc Factor de Factor Stuerzo: Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNpn=338.68 (F ETAPA 4 : Resiste ΦNsbg=115.82 (F ETAPA 5 : EI ETAPA 6 : EI ETAPA 6 : EI ETAPA 7 : EI ETAPA 7 : EI ETAPA 8 : EI ETAPA 9 : Resiste ΦVb=4.92 (KN) ETAPA 9 : Resiste	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de (N) nocia al aextracción por o (N) Conclusio El perno r hormigón resiste al arrai igón resiste al desprenci nigón resiste al desprenci Diseño a Corte del perno N) nocia abiaca al arrancami del perno Diseño a Corte del perno N) nocia abásica al arrancami del perno nocia básica al arrancami del perno nocia básica al arrancami del perno nocia básica al arrancami	In 163.30 LAJE binación de carga DD+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤ΦNcgb deslizamiento del anclaje Nu≤ΦNsbg Internal del hormigón del Nu≤ΦNsbg Internal del hormigón del Nu≤ΦNsbg Internal del anclaje Internal	SI SI SI aje SI al anclaje con co sociale con cabeza SI SI SI SI SI
Resistencia al del anclaje Vc Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNpn=338.68 (F ETAPA 4 : Resiste ΦNsbg=115.82 (F ETAPA 5 : EI ETAPA 6 : EI ETAPA 6 : EI ETAPA 7 : EI ETAPA 7 : EI ETAPA 8 : EI ETAPA 9 : Resiste ΦVb=4.92 (KN) ETAPA 9 : Resiste	Ando CODISEÑO A TRACCIÓN del perno NO INCIA al arrancamiento de CODISEÑO A TRACCIÓN del perno NO INCIA al al extracción por o CONCIUSIÓN DE PERSONA DE PER	In 163.30 LAJE binación de carga DD+0.7ESPy Max condición Nu≤ΦNs I hormigón del anclaje Nu≤ΦNcgb deslizamiento del anclaje Nu≤ΦNsbg Internal del hormigón del Nu≤ΦNsbg Internal del hormigón del Nu≤ΦNsbg Internal del anclaje Internal	SI SI SI aje SI al anclaje con co SI SI SI SI SI SI
Resistencia al del anclaje Vc Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : EI horm ETAPA 2 : EI ETAPA 2 : EI ETAPA 2 : EI ETAPA 2 : EI ETAPA 3 : EI horm ETAPA 4 : Resiste ΦVb=268.62 (K Diseño del hormigó ETAPA 2 : Resiste ΦVb=4.92 (KN ETAPA 3 : Resiste	Ando CODISEÑO A TRACCIÓN del perno NO INCIA al arrancamiento de CODISEÑO A TRACCIÓN del perno NO INCIA al al extracción por o CONCIUSIÓN DE PERSONA DE PER	Interest of the control of the con	Cumple SI SI SI aje SI en tracción anclaje a tracció laje con cabez: SI SI SI Ceo del anclaje
Resistencia al del anclaje Vc Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNpn=338.68 (K ETAPA 4 : Resiste ΦNsbg=115.82 (C ETAPA 1 : EI horm ETAPA 2 : EI ETAPA 2 : EI ETAPA 2 : EI ETAPA 2 : EI ETAPA 3 : EI horm ETAPA 4 : Resiste ΦVb=268.62 (K Diseño del hormigó ETAPA 2 : Resiste ΦVb=4.92 (KN ETAPA 3 : Resiste	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de (N) nocia al a extracción por o (N) Conclusio El perno hormigón resiste al desprendimiento hormigón resiste al desprendimiento Diseño a Corte del perno N) nocia al desprendimiento N) nocia al desprendimiento N) nocia al desprendimiento (N) nocia al desprendimiento (N) nocia al desprendimiento (N) Conclusio	Interest of the control of the con	Cumple SI SI aje SI SI en tracción anclaje a tracció laje con cabeza SI SI SI ceo del anclaje
Resistencia al del anclaje Vc Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calcul. ETAPA 1 : Diseño	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de (N) nocia al aextracción por o (N) Conclusio El perno Diseño a Corte del perno N) concia desprendimiento N Conclusio El perno Diseño a Corte del perno N) nocia al desprendimiento (N) Conclusio Conclusio Diseño a Corte del perno N) nocia al desprendimiento (N) nocia al arrancamiento (N) Conclusio El perno (N) Conclusio El perno (N) Conclusio El perno (N)	In the state of	Cumple SI SI SI SI Part tracción anclaje a tracció laje con cabeza SI SI SI SI SI SI SI SI SI S
Resistencia al del anclaje Vc Factor de Factor Sefuerzo Nu máx= Vu x=1 Menor esfuerzo calculado	RESUMEI Cargas de tracción = de Cargas de corte = Solicitante 15.72 (KN) .50 (KN) Esfuerzo Calculi ETAPA 1 : Diseño ΦNs=516.58 (K Diseño del hormigó ETAPA 2 : Resiste ΦNcgb=61.24 (k ETAPA 3 : Resiste ΦNsbg=115.82 (c ETAPA 4 : Resiste ΦNsbg=115.82 (c ETAPA 1 : ETAPA 2 : El Horm ETAPA 4 : Resiste ΦVb=4.92 (KN ETAPA 3 : Resiste ΦVb=4.92 (KN ETAPA 4 : Resiste ΦVb=1.92 (NO ETAPA 4 : Resiste ΦVcp=106.14 (k ETAPA 1 : EL H	N DE PERNOS DE ANCI 0.75 0.65 Com 1.0 ado C Diseño a Tracción del perno N) nocia al arrancamiento de (N) nocia al a extracción por o (N) Conclusio El perno hormigón resiste al desprendimiento hormigón resiste al desprendimiento Diseño a Corte del perno N) nocia al desprendimiento N) nocia al desprendimiento N) nocia al desprendimiento (N) nocia al desprendimiento (N) nocia al desprendimiento (N) Conclusio	In 163.30 AJE binación de carga DD+0.7ESPy Max condición Nu≤ΦNs Il hormigón del anclaje Nu≤ΦNcgb deslizamiento del anclaje Nu≤ΦNsbg Internat del hormigón del Nu≤ΦNsbg Internat del hormigón del Nu≤ΦNsbg Internat del anclaje In por deslizamiento del anclaje In por deslizamiento del Idimiento lateral del anc Vu≤ΦVs ento Vu≤ΦVb /u≤ΦVcbg del hormigón por cabe Vu≤ΦVcp International del anclaje Intern	Cumple SI SI SI aje SI anclaje con ca SI Ceo del anclaje SI claje a corte

• PB-2

Docietopolo hormidon tio	24.00	MD
Resistencia hormigón f'c	24.00	MPa
Resistencia del acero de refuerzo Fy	420.00	MPa
Lado de la cimentación L	280	mm
Lado de la cimentación L'	330	mm
Area de falla del hormigón An	92400.00	mm²
Area de falla del hormigón Ano	32400.00	mm²
Area de falla del hormigón Av	92250.00	mm²
Area de falla del hormigón Avo	11250.00	mm²
Excentricidad a tracción e`n	0.00	mm
Excentricidad a corte e`v	0.00	mm
Distancia borde perno c real	50.00	mm
Distancia borde perno c/1.5	33.33	mm
Distancia borde perno c'	50.00	mm
Distancia borde perno c'/1.5	33.33	mm
Distancia perpendicular borde perno c2	50.00	mm
Distancia perpendicular borde perno c2/1.5	33.33	mm
Distancia perpendicular borde perno c2'	50.00	mm
Distancia perpendicular borde perno c2·/1.5	33.33	mm
Altura de cimentacion h	400	mm
Altura de cimentacion h/1.5	266.67	mm
DISEÑO DE PLACA BASE		
Base de la columna dw	130	mm
Altura de la columna bf	130	mm
Resistencia del acero de la placa Fy	250000	KN/m
fph	8400	KN/m
Fb	187500	KN/m
Base de la placa Xpl	230	mm
Altura de la placa Ypl	280	mm
Excentricidad ex	851.08	mm
Excentricidad ey	177.35	mm
Exentricidad crítica ecrit	38.33	mm
Esfuerzo máximo en la placa fpmax(X)	7983.85	KN/m
Esfuerzo máximo en la placa fpmax(Y)	1651.77	KN/m
Esfuerzo mínimo en la placa fpmin(X)	-7295.65	KN/m
Esfuerzo mínimo en la placa fpmin(Y)	-963.58	KN/m
Fuerza en la placa px	66432.62	KN/m
Fuerza en la placa py	9340.54	KN/m
Distancia de la cara de la columna al borde de la placa xI	50	mm
Distancia de la cara de la columna al borde de la placa yl	75	mm
fmax (X)	7983.85	KN/m
fmax (Y)	1651.77	KN/m
Momento en la placa por metro Mborde X	9.98	KN.m/
Momento en la placa por metro Mborde Y	4.65	KN.m/
Momento total en la placa Mtot X	2.79	KN.m
Momento total en la placa Mtot Y	1.07	KN.m
Espesor de Placa Base ePL	9.46	mm
Eupouoi do i idua Dago ei E	J. T U	111111

DISEÑO DE PERNOS DE ANCLA	A IF	
Distancia entre pernos s	180	mm
·	60.00	mm
Distancia entre pernos s/3	230	mm
Distancia entre pernos exterior so		mm
Factor de modificación λ	1	
Factor de modificación Ψe	1	
Longitud de desarrollo Id	310.31	mm
Profundidad efectiva del perno hef	200	mm
Profundidad efectiva del perno hef calculado	60.00	mm
Distancia borde perno c calculada	50	mm
Distancia del gancho eh	80	mm
Longitud de apoyo de la carga I	152.4	mm
Resistencia a la Tracción:		
Coeficiente al desprendimiento k	10.00	
Factor de modificación $oldsymbol{\Psi}_{ extsf{ec}, extsf{N}}$	1.00	
Factor de modificación Ψ _{ed,N}	0.75	
Factor de modificación $\Psi_{c,N}$	1.25	
Resistencia básica desprendimiento Nb	22.77	KN
Resistencia al arrancamiento del hormigón del anclaje Ncgb	60.87	KN
Sección efectiva cabeza perno Abrg	587.98	mm²
Factor de modificación $\Psi_{c,P}$	1.00	
Resistencia al arrancamiento cabeza Np	112.89	KN
Resistencia al arrancamiento gancho Np j	32.92	KN
Resistencia a la extracción por deslizamiento del anclaje Npn	451.57	KN
Coeficiente resistencia al desprendimiento Nsbg	1.77	
Coeficiente resistencia al desprendimiento	1.00	
Resistencia al desprendimiento lateral del hormigón del anclaje con cabeza Nsbg	77.22	KN
Coeficiente * Nsbg	136.41	KN
Resistencia al Corte:		•
Factor de modificación $\Psi_{ec,V}$	1.00	
Factor de modificación Ψ _{ed.V}	0.90	
Factor de modificación $\Psi_{c,V}$	1.00	
Factor de modificación $\Psi_{h,V}$	1.00	
Resistencia básica al arrancamiento Vb	7.56	KN
Resistencia al arrancamiento Vcbg	55.81	KN
Coeficiente al desprendimiento del hormigón por cabeceo del anclaje kcp	2.00	
Resistencia al desprendimiento del hormigón por cabeceo del anclaje Vcp	121.75	KN

	RESUME	N DE PE	RNOS DE ANCI	-AJE	
Factor de	Cargas de tracción =		<mark>75</mark>		
	de Cargas de corte =	0.	65		
	Solicitante		Com	binación de carga	
	26.19 (KN)		1.0	D+0.7ESPy Max	
	.50 (KN)				1
Menor esfuerzo calculado	Esfuerzo Calcul	ado	C	ondición	Cumple
	.1	Diseño	a Tracción		
		del pern			
	ΦNs=516.58 (K	(N)		Nu≤ΦNs	SI
	Diseño del hormigó				
				I hormigón del anclaje	01
	ΦNcgb=45.66 (F			Nu≤ΦNcgb deslizamiento del anclaje	SI
	ΦNpn=338.68 (h			Nu≤ΦNpn	SI
ΦNn=ΦNcgb				lateral del hormigón del	
	ΦNsbg=102.31 (KN)	1	Nu≤ΦNsbg	SI
			Conclusio	nes	
	ETAPA 1 :			esiste a tracción	
				ncamiento del anclaje er	
				n por deslizamiento del ar	
	TEIDINA 4. ELHON		o a Corte	limiento lateral del ancla	jo con cadeZá
	ETAPA 1: Diseño	del pern			
	ΦVs=268.62 (K			Vu≤ΦVs	SI
	Diseño del hormigó				
			ica al arrancami		
	ΦVb=4.92 (KN			Vu≤ΦVb	SI
			rrancamiento	/<	SI
ΦVn=ΦVb	ΦVcbg=36.28 (F ETAPA 4: Resiste			/u≤ΦVcbg del hormigón por cabece	
	ΦVcp=79.14 (K			Vu≤ФVср	SI
		,	Conclusio	•	
	ETAPA 1:		El perno	resiste a corte	
		normigón		resiste a corte camiento básico del anci	aje a corte
	ETAPA 2 : EI h	El hormi	resiste al arrand gón resiste al ar	camiento básico del anc rancamiento del anclaje	a corte
	ETAPA 2 : EI h	El hormi encia al	resiste al arrand gón resiste al ar desprendimiento D DE ANCLAJE	camiento básico del anci rancamiento del anclaje del hormigón por cabec Y PLACA BASE	a corte
	ETAPA 2 : EI h ETAPA 3 : ETAPA 4 : Resist	El hormi encia al	resiste al arrandigón	camiento básico del ancirancamiento del anciaje del hormigón por cabec Y PLACA BASE	a corte
Dimensión de Espesor de la Diametro de P Numero de Pe Numero de Tu Espesor de Tu Dimencion de Longitud de la Grout = Longitud Embe	ETAPA 2: EI I ETAPA 3: ETAPA 4: Resist SECCIÓN FINAL DE Placa Base x = Placa Base y = Placa Base PL = emo ID = mos = erca H = Cabeza de Pemo S = Rosca N1 = ebida L =	El hormi encia al L PERNO	resiste al arrande gón resiste al arrandes prendimiento D DE ANCLAJE	camiento básico del ancirancamiento del anciaje del hormigón por cabec Y PLACA BASE	a corte
Dimensión de Espesor de la Diametro de P Numero de Pe Numero de Tu Espesor de Tu Dimencion de Longitud de la Grout = Longitud Embe Placa A = B =	ETAPA 2: EI I ETAPA 3: ETAPA 4: Resist SECCIÓN FINAL DE Placa Base x = Placa Base y = Placa ePL = emos = erca H = Cabeza de Pemo S = Rosca N1 = ebida L = ebida L = ebida L = epida S: ETAPA 4: Resist Res	El hormi encia al L PERNO	resiste al arrande gón resiste al arrandes prendimiento D DE ANCLAJE	amiento básico del ancirancamiento del anciaje del hormigón por cabec Y PLACA BASE NOCIA USA 230 280 25 3/4 4 16 30 42 25 200 60	a corte eo del anclaje mm mm mm in U mm m
Dimensión de Espesor de la Diametro de P Numero de Pe Numero de Tu Espesor de Tu Dimencion de Longitud de la Grout = Longitud Embe	ETAPA 2: EI I ETAPA 3: ETAPA 4: Resist SECCIÓN FINAL DE Placa Base x = Placa Base y = Placa ePL = emo ID = mos = erca H = Cabeza de Pemo S = Rosca N1 = ebida L = ebida L = et EP =	El hormi encia al L PERNO	resiste al arrande gón resiste al arrandes prendimiento D DE ANCLAJE	amiento básico del anciancamiento del anciancamiento del anciancia del hormigón por cabec Y PLACA BASE 230 280 25 3/4 4 16 30 42 25 200	a corte eo del anclaje mm mm mm un U mm

8. REFERENCIAS.

Ref. (1) ANSI/AISC 360 del 22 de junio 2010, Especificaciones para Edificios de Acero Estructural.

Ref. (2) ANSI/AISC 341-2010 del 22 de junio 2010 Seismic Provisions for Structural Steel Buildings

Ref. (3) ANSI/AISC358-2010, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Aplications.

Ref. (4) Código Ecuatoriano de la Construcción CPE INEN Parte 1 2001

Ref. (5) Norma NEC SE

Ref. (6) Estudio de Riesgo Sísmico del Hospital Ginecológico Obstétrico Nueva Aurora, FRACTAL, Vinicio Suarez, PhD 2019.

Ref. (7) Earthquake Long Resistent Steel. ARCELOT MITTEL, FSC.

Eur -Cod-051203.

Ref. (8) Ductility Aspect Of Steel Beams, V GIOCU; MOSOARCA, Vol 55 No.137-60

Ref. (9) Seismic Design of Steel Structures, AMIT VARMA & JUDY LIU, Los Angeles, USA.

Ref. (10) Análisis comparativo económico-estructural entre sistemas constructivos tradicionales y un sistema constructivo alternativo liviano - MARÍA BELÉN CORREA VALLEJO.

Ref.(11) Principios de Ingeniería de Cimentaciones, BRAJA M. DAS, 4ta Edición.

Ref.(12) American Concrete Institute - A.C.I. 2008.

Ref.(13) Diseño de Estructuras de Acero en Construcción Compuesta – Oscar de Buen López de Heredia.

GALO SERRANO CHICA.
INGENIERO CIVIL

SENESCYT: 1038-2022-2416578

CI: 140069319-6

