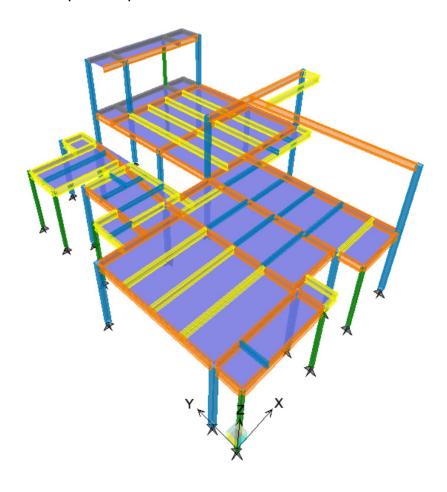


MEMORIA TECNICA DEL PROYECTO ESTRUCTURAL KFC PLAZA SAN FRANCISCO

Realizado por:

Ing. FABIÁN PACHANO ÁLVAREZ


Agosto / 2022

INTRODUCCION:

A continuación, se presenta los criterios técnicos que se utilizaron para la realización del proyecto estructural del KFC de la Plaza San Frnacisco, ubicado en la ciudad de Quito.

SISTEMA ESTRUCTURAL:

De acuerdo con los planos arquitectónicos entregados, el proyecto consta de un entrepiso y gradas para acceder a un tercer nivel para el cual se provee un marco de soporte. La estructura resistente consiste en columnas con vigas de acero laminado que soportan losas mixtas de placa colaborante. El sistema resistente forma pórticos espaciales dúctiles resistentes tanto a las cargas gravitacionales como a laterales requeridas para el uso de la estructura.

Se ha mantenido una disposición de pórticos ortogonal en su mayoría, y se han orientado columnas de tal forma que se reduzcan los efectos de torsión en

planta estando acoplados a los muros circundantes.

CALCULO:

El cálculo estructural se realizó utilizando ETABS v9.7, teniendo en cuenta los

siguientes efectos:

Calculo de momentos, cortes, reacciones en todos los elementos por

efecto de cargas verticales.

Calculo de momentos, cortes, reacciones en todos los elementos por

efecto de cargas sísmicas.

• Consideraciones de los efectos más desfavorables por combinaciones

de cargas.

MATERIALES:

Los materiales utilizados para el diseño fueron:

• Hormigón en Losas: $f'c = 210.00 \text{ Kg/cm}^2$

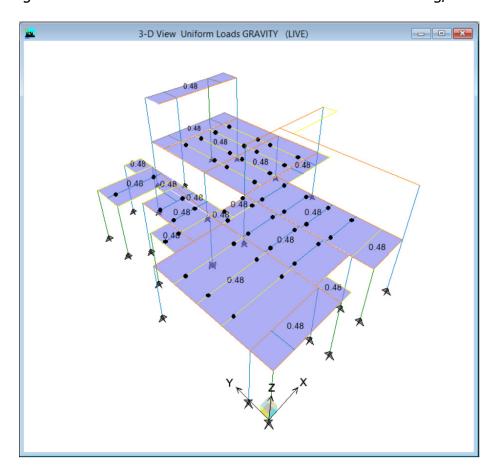
• Hormigón en Replantillo: f'c = 180.00 Kg/cm²

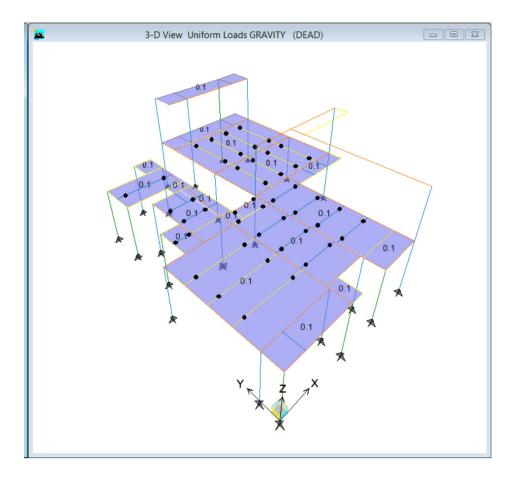
Acero Laminado A572 Gr50: fy = 3500.00 Kg/cm²

SECCIONES:

Depth | WidthTop | ThickTop | WebThick | WidthBot | ThickBot | Area | 133 Material Shape COLDFORM Wide Flange 0.1600 0.0800 0.0800 0.0050 0.0013 0.0000 0.0000 0.0005 0.0007 COLDFORM | Wide Flange | 0.2400 | 0.1000 | 0.0080 0.0040 | 0.1000 | 0.0080 | 0.0025 | 0.0000 | 0.0000 | 0.0010 | 0.0013 COLDFORM | Wide Flange | 0.2400 | 0.1000 0.0060 0.0040 | 0.1000 | 0.0060 | 0.0021 | 0.0000 | 0.0000 | 0.0010 | 0.0010 0.0080 COLDFORM Box/Tube 0.1500 0.1500 0.0080 0.0000 0.0000 0.0045 0.0000 0.0000 | 0.0024 | 0.0024 COLDFORM Box/Tube 0.2000 0.1000 0.0040 0.0040 0.0000 0.0000 0.0023 | 0.0000 | 0.0000 | 0.0016 | 0.0008 COLDFORM Box/Tube 0.1000 0.1000 0.0060 0.0060 0.0000 | 0.0000 | 0.0023 | 0.0000 | 0.0000 | 0.0012 | 0.0012 COLDFORM Box/Tube 0.2000 0.2000 0.0080 | 0.0080 | 0.0000 | 0.0000 | 0.0061 | 0.0000 | 0.0000 | 0.0032 | 0.0032

2

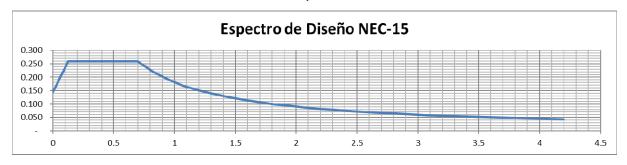

				Frame Section Properties									
S33	S22	Z33	Z22	TotalWt	otalMass	AMOD	A2MOD	A3MOD	JMOD	12MOD	I3MOD	MMOD	WMOD
0.0001	0.0000	0.0001	0.0000	0.5678	0.0578	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0002	0.0000	0.0002	0.0000	2.2252	0.2267	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0002	0.0000	0.0002	0.0000	1.1135	0.1134	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0002	0.0002	0.0002	0.0002	2.2446	0.2287	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0001	0.0001	0.0002	0.0001	0.2988	0.0304	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0001	0.0001	0.0001	0.0001	0.4047	0.0412	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0004	0.0004	0.0004	0.0004	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000


CARGAS:

Las hipótesis de cargas fueron elaboradas de acuerdo con lo recomendado por Norma Ecuatoriana de la Construcción, tomando en cuenta el uso que tendrá el sistema estructural:

Losa de Entrepiso:

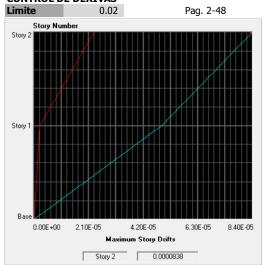
Peso Propio Elementos	Calculado por el Programa			
Carga Muerta	100.00	Kg/m ²		
Carga Viva Restaurantes	480.00	Kg/m ²		

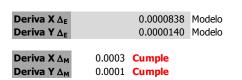


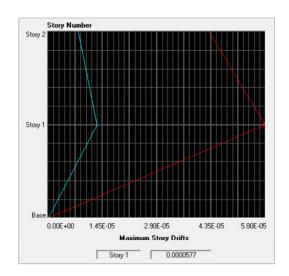
Carqa Sismo:

El análisis de sismo se determino a través de la normativa NEC-SE-DS, Los valores y el cálculo de derivas:

- Se ha utilizado un R de 5 Pórticos Intermedios a Momentos.
- Se usan los coeficientes de perfil de suelo correspondientes a un suelo tipo D: Fa=1.20, Fd=1.19, y Fs=1.28.
- La irregularidad en planta no tiene efecto por el acople con los muros circundantes y se usa un valor de 1.0, mientras que en elevación se ha mantenido un factor de 1.0.
- Se ha usado un factor de importancia I=1.00.




ESPECTRO DE DISEÑO SISMICO - PERIODO FUNDAMENTAL Y CORTANTE BASAL - METODO NEC 2015

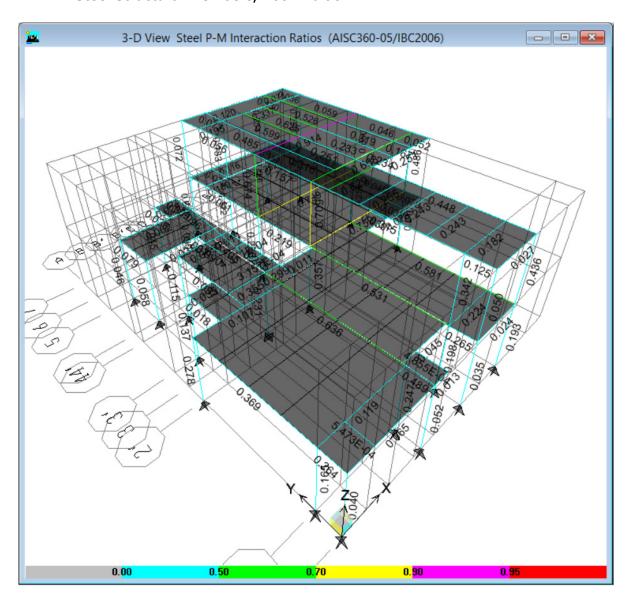

Z	0.40	Pag. 2-10	Sa	0.864	
Zona	V	Pag. 2-10 a 2-23	r	1.000	Suelo D
Suelo	D	Pag. 2-35, 2-36 y 2-40	n	1.800	Costa Ecuatoriana
Factor I	1.50	Pag. 2-49	z	0.400	Zona
Coeficiente	5.00	Pag. 2-57 o 2-65	Fa	1.200	
Фе	1.00	Pag. 2-50 a 2-53			
Фр	1.00	Pag. 2-50 a 2-53			
Fa	1.200		Ct	0.055	Pag. 2-55 y 2-56
Fd	1.190		h	3.5	m Dato
Fs	1.280		а	0.9	Pag. 2-55 y 2-56
			T	0.1698	0.22078384 Pag. 2-55
Тс	0.698	Pag. 2-44	V'	0.30	
T _L	2.856	Pag. 2-44	zFa	0.144	
То	0.127	Pag. 2-44	nzFa	0.259	
V	0.259 W				

ANALISIS DE DERIVAS:

CONTROL DE DERIVAS

Deriva X Δ_E		0.0000115	Modelo
Deriva Y Δ_E		0.0000577	Modelo
Deriva X Δ_M	0.0000	Cumple	
Deriva Y Δ_M	0.0002	Cumple	

COMBINACIONES DE CARGAS:


Name	Load Case/Combo	Scale Factor	Туре	Auto
CVCM	LIVE	1	Linear Add	
CVCM	DEAD	1		
DCON1	DEAD	1.4	Linear Add	
DCON2	DEAD	1.2	Linear Add	
DCON2	LIVE	1.6		
DCON3	DEAD	1.4	Linear Add	
DCON3	LIVE	1		
DCON3	SX	1		
DCON4	DEAD	1.4	Linear Add	
DCON4	LIVE	1		
DCON4	SX	-1		
DCON5	DEAD	1.4	Linear Add	
DCON5	LIVE	1		
DCON5	SY	1		
DCON6	DEAD	1.4	Linear Add	
DCON6	LIVE	1		
DCON6	SY	-1		
DCON7	DEAD	1.4	Linear Add	
DCON7	SX	1		
DCON8	DEAD	1.4	Linear Add	
DCON8	SX	-1		
DCON9	DEAD	1.4	Linear Add	
DCON9	SY	1		
DCON10	DEAD	1.4	Linear Add	
DCON10	SY	-1		
DCON11	DEAD	0.7	Linear Add	
DCON11	SX	1		
DCON12	DEAD	0.7	Linear Add	
DCON12	SX	-1		
DCON13	DEAD	0.7	Linear Add	
DCON13	SY	1		
DCON14	DEAD	0.7	Linear Add	
DCON14	SY	-1		

DISEÑO:

Para el Análisis se utilizó el código (ASCE/SEI 7-10), el cual es la base de la Norma Ecuatoriana de La Construcción.

- American Society of Civil Engineers, Minimum Design Loads for Building and Other Structures (ASCE/SEI 7-10).
- ANSI/AISC 360-10, Specification for Structural Steel Buildings.
- ANSI/AISC 341-10, Seismic Provisions for Structural Steel Buildings.

AISI S100-07 – North American Specification for the Design of Cold-Formed
 Steel Structural Members, 2007 Edition.

OBSERVACIONES:

El presente estudio estructural ha sido elaborado en base a los códigos de

construcción vigentes, y de acuerdo con los planos arquitectónicos del proyecto.

Quedo a su disposición a fin de aclarar cualquier duda que se pueda

presentar respecto al mismo.

Atentamente,

Ing. Fabián Pachano Álvarez

C.I. 171358033-8

Reg. No. 1001-2018-2018639

linkedin.com/in/fabian-pachano-378533b9

linkedin.com/company/dcp-ingenieria